

Deployment of geologic map services
using GeoSciML-Portrayal
An introduction to a simple feature schema for supporting map services and

guidelines for service deployment

A product of the Arizona Geological Survey

3/27/2012

1

Contents

1 Introduction ... 3

1.1 What is USGIN? .. 3

1.2 GeoSciML-Portrayal and GeoSciML ... 4

1.3 Cookbook Prerequisites ... 6

1.4 Cookbook Workflow ... 7

2 GeoSciML-Portrayal Feature Types ... 7

2.1 ContactView Features ... 8

2.2 ShearDisplacementView Features ... 10

2.3 GeologicUnitView Features .. 12

3 Deployment Cookbook ... 15

3.1 Mapping from source data .. 15

3.1.1 Interchange formats ... 16
3.1.2 Schema mapping in ESRI ArcGIS ... 16
3.1.3 Schema mapping in SQL ... 20
3.1.4 Notes on schema mapping in SQL ... 21

3.2 Vocabulary mapping ... 22

3.3 Excel Workbook template ... 23

3.4 Configuring OGC services ... 24

4 Styling .. 24

4.1 How to Create a Styled Layer Descriptor (SLD) using Arc2Earth 25

5 Deploying Your Web Service ... 27

6 Testing Your Web Service ... 27

6.1 Web Service Requests ... 27

6.2 Adding a Web Map Service in ArcCatalog .. 29

6.3 Adding a Web Service in uDig .. 29

7 Registering with OneGeology and Submitting your Service .. 30

Appendix A: Deploying GeoSciML-Portrayal Web Services in GeoServer 30

A.1. Logging in .. 31

A.2. Service-Level Metadata .. 31

A.3. Creating a Workspace ... 32

A.4. Connecting to your PostGIS Database ... 33

A.5. Adding Layers to a Workspace ... 33

A.4.1. The Data tab of the Edit Layer page ... 34
A.4.2. The Publishing tab of the Edit Layer page .. 35

A.5. Importing Layer Styles from an SLD File .. 35

A.6. Finishing Up .. 35

A.7. GeoServer Troubleshooting ... 35

Appendix B: Deploying GeoSciML-Portrayal Web Services in ArcGIS Server 37

B. 1 Connecting to your ArcGIS Server instance ... 37

2

B. 2 Create an ArcMap Project for your web service ... 37

B. 3 Publishing on ArcGIS Server .. 38

B. 4 Troubleshooting ArcGIS Server .. 39

Appendix C: OneGeology Web Service Requirements .. 40

C. 1 Service-Level Metadata Requirements ... 40

C. 2 Service Title and Service Name Requirements .. 41

OneGeology Service Title Examples: ... 42

C. 3 Layer Naming and Title Conventions .. 42

Layer Title Examples ... 42
Layer Name Examples ... 43
A sample WMS GetCapabilities document ... 43

C. 4 Additional Layer-level Metadata Requirements .. 43

8 Glossary ... 44

3

1 Introduction
The key to interoperable geologic map services is the ability to portray adjacent maps using the

same symbolization scheme such that when the maps are displayed, the visual discontinuity at the

boundary is minimized. Because of the discrepancies in mapping interpretation and intention,

there are commonly differences in the definition of map units between geologic maps produced by

different authors or at different times. Resolving such differences is a compilation process that

often requires additional field work; this is outside the scope of service deployment. What can be

avoided is visual discontinuity due to portrayal schemes that assign different colors to similar

units on adjacent maps.

GeoSciML-portrayal addresses this issue by requesting that polygons representing geologic unit

outcrops be categorized using identifiers from the CGI Simple Lithology vocabulary and the ICS

stratigraphic time scale. The use of a shared map legend based on these categorization schemes

provides first order lithologic and age harmonization between maps provided by different services.

Map services from OneGeology Europe provide an example of this approach (see http://onegeology-

europe.brgm.fr/geoportal/viewer.jsp). The GeoSciML-portrayal schema provides an additional

symbol-identification property to enable preservation of the legend units and portrayal from the

original source map. This document is designed to facilitate the deployment and maintenance of

geoscience information as interoperable, publicly available OGC web services in accordance with

USGIN and OneGeology specifications.

1.1 What is USGIN?
The United States Geoscience Information Network (USGIN) is a distributed data-sharing

network that uses open-source software and existing World Wide Web infrastructure and

browsers. The USGIN initiative is the product of a partnership between the Association of

American State Geologists (AASG) and the United States Geological Survey (USGS) created to

facilitate discovery of, and access to, geoscience information provided by state and federal

geological surveys of the United States.

USGIN is:

• conceptual framework for sharing geoscience data

• a distributed data-sharing network

• a collection of open-source applications, standards, procedures, and protocols for sharing

geoscience data

• web-based, distributed, open-source, and interoperable

Anyone can access the data shared via USGIN, and any data that is shared according to USGIN

specifications is automatically a part of the network. For more information, see the USGIN website

(http://usgin.org/).

http://onegeology-europe.brgm.fr/geoportal/viewer.jsp
http://onegeology-europe.brgm.fr/geoportal/viewer.jsp
http://usgin.org/

4

1.2 GeoSciML-Portrayal and GeoSciML
GeoSciML-portrayal is a simplified view of GeoSciML (Geoscience Markup Language, see Richard

and CGI Interoperability Working Group, 20071), which is a specialized XML markup language

designed for sharing geoscience data between different computer systems (Figure 1). GeoSciML is

based on a complex information model developed to support interchange of a wide variety of

detailed geologic information. GeoSciML-portrayal is an XML markup language that implements a

small subset of the GeoSciML information model specifically for interoperable map services

delivering geologic map unit, contact, and shear displacement structure (fault and ductile shear

zone) features. The use of standard vocabularies with this schema enables map portrayal using

shared legends to achieve basic visual harmonization of maps, even when these maps are provided

by different services.

GeoSciML-portrayal is considered a view of the GeoSciML information model. In the context of a

database, a view is a selection of fields. For example, given a database with twelve fields, an

arbitrary grouping of four such fields would constitute a view of the database. A more concrete

example is a card catalog: if one chose to look only at the Title field of each card in the catalog, this

choice would constitute a discrete view of the catalog. In XML markup languages element tags are

analogous to database fields. The structure of GeoSciML-portrayal documents is specified by an

XML schema. This document describes the GeoSciML-portrayal schema that structures documents

written using the GeoSciML-portrayal markup language.

GeoSciML is an XML markup language developed as an OpenGeospatial Consortium (OGC)

Geography Markup Language (GML) v3.2 application for encoding a wide variety of geoscientific

information (Richard et al., 2007); GeoSciML defines a collection of complex GML features for

describing geoscience entities. The GeoSciML-portrayal schema simplifies GeoSciML by merging

complex property values into single, human-readable text fields and assigning single,

representative identifiers from controlled vocabularies for lithology and age that can be used for

1 Richard, S. M., and CGI Interoperability Working Group, 2007, GeoSciML – A GML Application for

Geoscience Information Interchange, in Soller, D.R., ed., Digital Mapping Techniques ‘07—Workshop Proceedings: U.S.

Geological Survey Open-File Report 2007–1285, p. 47-59. Available at http://pubs.usgs.gov/of/2007/1285/pdf/Richard.pdf

(accessed 4/10/2012).

Figure 1: A visual representation of the relationship between GeoSciML and

GeoSciML-Portrayal

http://pubs.usgs.gov/of/2007/1285/pdf/Richard.pdf
http://pubs.usgs.gov/of/2007/1285/pdf/Richard.pdf
http://www.geosciml.org/geosciml/3.0/doc/
http://www.w3.org/Mobile/posdep/GMLIntroduction.html
http://en.wikipedia.org/wiki/GML_Application_Schemas
http://pubs.usgs.gov/of/2007/1285/pdf/Richard.pdf

5

standardized map legends. Use of standard vocabulary enables map portrayal using shared

legends for maps provided by different services. In addition the scheme includes text information

for human users when browsing a geologic map, a link to a full GeoSciML feature element if

available, and a symbol identifier field to enable a user-defined symbolization scheme in each map

service. Most WMS implementations simplify deployment of WFS service presenting features

using the same schema. Linking the simple-feature WMS and WFS allows clients to acquire basic

text geologic feature descriptions that can be used in web-mapping applications to construct

custom legends. Linking to full GeoSciML features allows the portrayal scheme to be used in a

map browsing and query interface to identify and select features for further processing that can be

acquired as highly structured, information-rich, complex GML features.

GeoSciML-portrayal conforms to the level 0 of the Simple Features Profile for GML (OGC 10-100r3

- van den Brink et al., 2011; OGC 06-049). The simple features profile supports only a limited

subset of possible GML geometry types that may be used to describe feature geographic location

and shape. For the purposes of GeoSciML simple features, these include gml:Point,

gml:LineString, gml:Curve, gml:Polygon, gml:Surface, gml:MultiPoint, gml:MultiCurve,

gml:MultiSurface and multi-geometry types consisting of collections of these base types. For a

useful discussion of GML simple vs. complex features, see this Geoserver documentation page.

GeoSciML-portrayal features are analogous to GeoSciML mapped features with additional text

attributes for human consumption, a flatted-relation view of the age, and assignment to a single

lithology. The portrayal scheme consists of 'free-text' fields and identifier fields. In robust services

the free-text fields will contain well-structured summaries of complex GeoSciML data in a format

suitable for reading by the intended users. Identifier fields should contain identifiers for concepts

in a controlled vocabulary (for example CGI Simple Lithology) that specify representative thematic

properties. Inclusion of these standardized identifiers enables interoperability across services.

Ideally these should be URIs that can be dereferenced to obtain machine-processable or human-

readable representations of the identified concepts.

In addition, each GeoSciML-portrayal feature includes an (optional) identifier for a specification,

which is a resource containing a description of that particular feature. In many cases, the

descriptions will be the same for all polygons assigned to the same map unit or classified as the

same kind of contact or structure. If more complete information is available, different descriptions

may be associated with subsets of features of the same type that are portrayed with the same

symbol. In the most extreme case, each feature might have a unique description that captures the

full spatial variability of a geologic unit or structure. Following the standard patterns of web

architecture, the specification_uri should be dereferenceable to obtain one or more representations

of that description. For maximum interoperability, one of these representations should be a

GeoSciML-encoded description of the feature, but other encodings might also be available, for

example html web pages, other XML schema, or JSON. For those familiar with full GeoSciML

v3.0, the specification_uri property is equivalent to the specification association from

MappedFeature to GeologicFeature.

https://portal.opengeospatial.org/files/?artifact_id=42729
http://docs.geoserver.org/stable/en/user/data/app-schema/complex-features.html?highlight=simple%20feature
http://www.geosciml.org/geosciml/3.0/doc/GeoSciML/GeoSciML-Core/GeologicFeature/MappedFeature.html
http://resource.geosciml.org/Vocab2011html/SimpleLithology201012.html

6

Deployment of an interoperable dataset requires first that the interchange format used for

interoperability is well understood. The following sections are intended to provide the necessary

background understanding of GeoSciML-portrayal, and should be studied carefully. The

deployment process consists of determining how the information in the dataset to be published can

best be represented using the elements in the GeoSciML-portrayal model, populating the feature

collections that will be served, and configuring a WMS server to display the data. To keep costs low

and promote adoption, it is possible to perform all of the steps outlined in this cookbook using free-

and-open-source software.

1.3 Cookbook Prerequisites
You will need the following:

1. Geologic data in tabular form, for example:

a. File geodatabases

b. Microsoft Access databases

c. Personal geodatabases

d. PostGIS databases

e. SDE databases

f. Shapefiles

2. Server software that implements OGC web services:

a. GeoServer and accompanying software

b. ESRI ArcGIS Server (proprietary, but widely used)

3. Access to a server with sufficient permissions to load data and deploy service instances

4. GIS software for testing services; examples include:

a. ArcGIS

b. Grass GIS

c. gvSIG

d. OpenLayers

e. PostGIS plugin for PostgreSQL DBMS

f. Quantum GIS

g. uDIG

Notes:

 Server software applications capable of providing web services:

o ESRI ArcGIS Server is proprietary server software. It can utilize data in ESRI

geodatabase format stored in a variety of relational databases (including PostGIS),

in shape files, or in ESRI file geodatabases.

o GeoServer is actively maintained, free-and-open-source server software and can

utilize data from PostgreSQL databases with the PostGIS-plugin or in ESRI

Shapefiles. . GeoServer can be obtained at the following web locations:

 http://geoserver.org/

 http://opengeo.org/technology/GeoServer/

http://geoserver.org/
http://opengeo.org/technology/GeoServer/

7

 PostGIS is a plugin for PostgreSQL database management system (DBMS) that provides

geographic information functions.

 PostgreSQL DBMS is a free-and-open-source relational database management system

 A database management system is a program that controls the creation, maintenance, and

use of a database; numerous examples exist, including:

o Relational DBMS, such as MRDS, Rel, and Micro DBMS

o SQL DBMS, such as INGRES, DB2, and Microsoft SQL Server

 SQL DBMS are so named because they use Standardized Query Language

(SQL)

o NoSQL DBMS, such as memcached, Redis, and CouchDB

 NoSQL DBMS do not use SQL as their primary query language (NoSQL means “not only

SQL”)pgAdmin III is a free, open-source application that provides a user interface to

create and edit databases as well as data tables. An introduction to pgAdmin as well as

documentation for using the software can be found on their website here.

For information on PostGreSQL and deploying services using multiple geodatabases, click here.

1.4 Cookbook Workflow
Setting up a geologic data web map service involves the following steps:

1. Map your source data from its original schema to the GeoSciML-portrayal schema; this step

can be further broken down into the following sub-steps

a. Map existing content fields to corresponding GeoSciML-portrayal schema elements

b. Determine controlled vocabulary terms for lithology and age to assign for each map

unit

c. Load data from the original database format to tables or files required by the server

software used to deploy the web service

2. Establish symbology for lithostratigraphic polygon portrayal that can be used by the map

server.

3. Deploy your web service, create metadata for dataset and service, and, if desired, register

service with OneGeology

2 GeoSciML-Portrayal Feature Types
Within the scope of the GeoSciML-portrayal markup language, three feature classes are defined:

 ContactView: contains features that represent the mapped traces of boundaries between

geologic units

 ShearDisplacementStructureView: contains features that represent the mapped trace of

any type of fault or shear zone that is treated as a single surface for map portrayal

o The concept of ‘Shear displacement structure’ includes all fault types or shear zones

along which displacement has occurred, from a simple, single 'planar' brittle or

ductile surface to a fault system comprising multiple strands of both brittle and

http://www.pgadmin.org/
http://www.onegeology.org/

8

ductile nature. Because this feature class is constrained to have a linear geometry,

representation is limited to shear displacement structures that are considered single

surfaces at the scale of portrayal.

 GeologicUnitView: contains polygon features that represent the outcrop of a geologic unit

mapped on some outcrop surface called the ‘map horizon’. Example map horizons include:

o Earth surface: the most common map horizon for a geologic map

o Top of basement: bedrock on which a stratigraphic section of interest is deposited.

For example, in the Grand Canyon, the Precambrian crystalline rocks in the inner

gorge (e.g. Vishnu schist) would be considered the basement.

o Mission-Pima open-pit mine, 6/20/1990

Since the map horizon is not specified in each feature’s properties, it must be described in

the metadata for the feature collection. Overlapping polygons representing outcrops on

different horizons (e.g. ‘Earth surface’ and ‘bedrock surface’) will be represented as distinct

features in different GeoSciML-portrayal services. Each GeoSciML-portrayal service

provides geologic unit outcrop polygons, associated contacts between the units, and fault

traces on a single map horizon at any particular location in the extent of the feature

collection.

For more information about the relationship between GeoSciML and GeoSciML-portrayal, refer

back to the GeoSciML-Portrayal section.

2.1 ContactView Features
These features represent linear mapped features that are specified as GeoSciML Contact Features

(Figure 2).

Table 1 describes each of the elements in the ContactView feature schema; in this table:

 Name is the name of an element that describes a given feature

 Implementation data type indicates the XML data type used to implement the element. The

xs prefix is an abbreviation for the XML schema namespace:

o AnyURI: This element will contain an appropriate URI

Figure 2: The relationship between GeoSciML Contact Features and GeoSciML ContactView

Features

http://www.geosciml.org/geosciml/3.0/doc/GeoSciML/GeologicStructure/Contact.html

9

 URIs can be used to refer to other resources, such as controlled concepts in

published vocabularies

o String: This element will contain a free-text series of alphanumeric characters

o Decimal: This element will contain a numeric value

Note that these values are modified by the xs: prefix; the xs: prefix indicates conformity to

the W3C XML Schema

 Notes contains a general description of a given element

Table 1: ContactView feature scheme

Name Implementation

data type

Notes

identifier xs:AnyURI Globally unique identifier for the individual feature. Recommended practice

is that this identifier be derived from the primary key for the spatial objects in

the source data in case information needs to be transferred from the

interchange format back to the source database. This identifier is analogous to

the identifier for a GeoSciML MappedFeature.

name xs:string Display name for the Contact. Examples: ‘depositional contact’,

‘unconformity’, ‘Martin-Escabrosa contact.’

description xs:string Text description of the contact; may be a generic description of a contact type

taken from an entry on a geological map legend or a more specific description

of the particular contact.

contactType xs:string Text label specifying the kind of surface separating two geologic units

including primary boundaries such as depositional contacts, all types of

unconformities, intrusive contacts, and gradational contacts, as well as faults

that separate geologic units. Ideally this would be the preferred label for the

concept identified by contactType_uri.

observationMethod xs:string Metadata snippet indicating how the spatial extent of the feature was

determined. ObservationMethod is a convenience property that provides a

quick and dirty approach to observation metadata.

positionalAccuracy xs:decimal Quantitative values define the radius of an uncertainty buffer around a

mappedFeature (e.g. a positionAccuracy of 100 m for a line feature defines a

buffer polygon of total width 200 m centered on the line).

source xs:string Text describing feature-specific details and citations to source materials, and

if available providing URLs to reference material and publications describing

the geologic feature. This could be a short text synopsis of key information

that would also be in the metadata record referenced by metadata_uri.

contactType_uri xs:AnyURI URI referring to a controlled concept from a vocabulary defining the Contact

types. Mandatory property - if no value is provided then a URI referring to a

controlled concept explaining why the value is nil must be provided.

specification_uri xs:AnyURI URI referring the GeoSciML Contact feature that describes the instance in

detail. Mandatory property - if no value is provided then a URI referring to a

controlled concept explaining why the value is nil must be provided.

metadata_uri xs:AnyURI URI referring to a formal metadata record describing the provenance of data.

genericSymbolizer xs:string Identifier for a symbol from standard (locally or community defined)

symbolization scheme for portrayal. There should be an accompanying SLD

file. available defining the symbol associated with each genericSymbolizer

value.

http://www.w3.org/XML/Schema/

10

Name Implementation

data type

Notes

shape GM_Object Geometry defining the extent of the feature of interest. This is the only

element with complex content, and must contain a GML geometry that is

valid for the Geography Markup Language (GML) simple features profile

(OGC 06-049r1.)

In GeoSciML terms, GeoSciML-portrayal ContactView Features will be an instance of a GeoSciML

MappedFeature with key property values from the associated ContactFeature summarized in text

(data type xs:string) fields as well as properties suffixed with '_uri' containing URIs referring to

other resources (for example, controlled concepts in published vocabularies).

2.2 ShearDisplacementView Features
These features represent linear mapped features that are specified as GeoSciML

ShearDisplacementStructure Features (Figure 3).

Table 2 describes each of the elements in the ShearDisplacementStructure feature schema; in this

table:

 Name is the name of an element that describes a given feature

 Implementation data type indicates the specifications for a given element:

o AnyURI: This element will contain an appropriate URI

 URIs can be used to refer to other resources, such as controlled concepts in

published vocabularies

o String: This element will contain a free-text series of alphanumeric characters

o Decimal: This element will contain a numeric value

Note that these values are modified by the xs: prefix; the xs: prefix indicates conformity to

the W3C XML Schema

 Notes contains a general description of a given element

Figure 3: The relationship between GeoSciML ShearDisplacementStructure Features and

GeoSciML ShearDisplacementStructureView Features

http://www.geosciml.org/geosciml/3.0/doc/GeoSciML/GeologicStructure/ShearDisplacementStructure.html
http://www.w3.org/XML/Schema/

11

Table 2: Elements in ShearDisplacementStructureView feature scheme

Name Type Notes
identifier xs:AnyURI Globally unique identifier for the individual feature. Recommended

practice is that this identifier be derived from the primary key for the

spatial objects in the source data in case information needs to be

transferred from the interchange format back to the source database.

This identifier is analogous to the identifier for a GeoSciML

MappedFeature.

name xs:string Display name for the the ShearDisplacementStructure. This may be a

generic fault type (e.g. ‘thrust fault’, ‘strike-slip fault’) or a particular

fault name (e.g. ‘Moine thrust’, ‘San Andreas Fault’).

description xs:string Text description of the ShearDisplacementStructure, typically taken

from an entry on a geological map legend.

faultType xs:string Type of ShearDisplacementStructure (as defined in GeoSciML).

movementType xs:string Summary of the type of movement (e.g. dip-slip, strike-slip) on the

ShearDisplacementStructure.

deformationStyle xs:string Description of the style of deformation (e.g. brittle,ductile etc) for the

ShearDisplacementStructure.

displacement xs:string Text summary of displacement across the ShearDisplacementStructure.

geologicHistory xs:string Text (possibly formatted with formal syntax) description of the age of

the ShearDisplacementStructure (where age is a sequence of events

and may include process and environment information).

observationMethod xs:string Metadata snippet indicating how the spatial extent of the feature was

determined. ObservationMethod is a convenience property that

provides a quick and dirty approach to observation metadata when data

are reported using a feature view (as opposed to observation view).

positionalAccuracy xs:string Quantitative values which define the radius of an uncertainty buffer

around a mappedFeature (eg: a positionAccuracy of 100 m for a line

feature defines a buffer polygon of total width 200 m centered on the

line).

source xs:string Text describing feature-specific details and citations to source

materials, and if available providing URLs to reference material and

publications describing the geologic feature. This could be a short text

synopsis of key information that would also be in the metadata record

referenced by metadata_uri.

faultType_uri xs:AnyURI URI referring to a controlled concept from a vocabulary defining the

fault type (ShearDisplacementStructure). Mandatory property - if no

value is provided then a URI referring to a controlled concept

explaining why the value is nil must be provided.

movementType_uri xs:AnyURI URI referring to a controlled concept from a vocabulary defining the

ShearDisplacementStructure movement type. Mandatory property - if

no value is provided then a URI referring to a controlled concept

explaining why the value is nil must be provided.

deformationStyle_uri xs:AnyURI URI referring to a controlled concept from a vocabulary defining the

ShearDisplacementStructure deformation style. Mandatory property -

if no value is provided then a URI referring to a controlled concept

explaining why the value is nil must be provided.

representativeAge_uri xs:AnyURI URI referring to a controlled concept specifying the most

representative stratigraphic age interval for the GeologicUnit. This will

be defined entirely at the discretion of the data provider and may be a

single event selected from the geologic feature's geological history or a

value summarizing the all or part of the feature's history.

12

Name Type Notes
representativeLowerAge_uri xs:AnyURI URI referring to a controlled concept specifying the most

representative lower value in a range of stratigraphic age intervals for

the GeologicUnit. This will be defined entirely at the discretion of the

data provider and may be a single event selected from the geologic

feature's geological history or a value summarizing the all or part of the

feature's history.

representativeUpperAge_uri xs:AnyURI URI referring to a controlled concept specifying the most

representative upper value in a range of stratigraphic age intervals for

the GeologicUnit. This will be defined entirely at the discretion of the

data provider and may be a single event selected from the geologic

feature's geological history or a value summarizing the all or part of the

feature's history.

specification_uri xs:AnyURI URI referring the GeoSciML ShearDisplacementStructure feature that

describes the instance in detail. Mandatory property - if no value is

provided then a URI referring to a controlled concept explaining why

the value is nil must be provided.

metadata_uri xs:AnyURI URI referring to a metadata record describing the provenance of data.

genericSymbolizer xs:string Identifier for a symbol from standard (locally or community defined)

symbolization scheme for portrayal.

shape GM_Object

(GM_curve)

Geometry defining the extent of the feature of interest.

In GeoSciML terms this will be an instance of a MappedFeature with key property values from the

associated ShearDisplacementStructure feature summarized in text fields (data type xs:string) as

well as fields containing identifiers (URI) for fault type, deformation style, movement type,

geologic age, and a formally-encoded (ideally in GeoSciML) specification for interoperability. The

latter are the properties suffixed with '_uri' and will contain URIs referring to other resources, for

example controlled concepts in published vocabularies.

2.3 GeologicUnitView Features
These features represent polygon mapped features that are specified as GeoSciML GeologicUnit

Features (Figure 4), which are used to provide properties associated with a body of material in the

earth.

Figure 4: The relationship between GeoSciML GeologicUnit Features and GeoSciML

GeologicUnitView Features

http://www.geosciml.org/geosciml/3.0/doc/GeoSciML/GeologicStructure/GeologicStructure.html
http://www.geosciml.org/geosciml/3.0/doc/GeoSciML/GeologicStructure/GeologicStructure.html

13

Table 3 describes each of the elements that describe ShearDisplacementStructure Features; in this

table:

 Name is the name of an element that describes a given feature

 Implementation data type indicates the specifications for a given element:

o AnyURI: This element will contain an appropriate URI

 URIs can be used to refer to other resources, such as controlled concepts in

published vocabularies

o String: This element will contain a free-text series of alphanumeric characters

o Decimal: This element will contain a numeric value

Note that these values are modified by the xs: prefix; the xs: prefix indicates conformity to

the W3C XML Schema

 Notes contains a general description of a given element

Table 3: Elements in GeologicUnitView feature class

Name Type Notes
identifier xs:AnyURI Globally unique identifier for the individual feature. Recommended

practice is that this identifier be derived from the primary key for the

spatial objects in the source data in case information needs to be

transferred from the interchange format back to the source database. This

identifier is analogous to the identifier for a GeoSciML MappedFeature.

name xs:string Display name for the GeologicUnit; this may be populated by a geologic

unit name, or more likely, an abbreviation used to label outcrops of the

unit in a map display.

description xs:string Text description of the GeologicUnit, typically taken from an entry on a

geological map legend.

geologicUnitType xs:string Type of GeologicUnit (as defined in GeoSciML).

rank xs:string Stratigraphic rank of GeologicUnit (as defined in GeoSciML). Examples

include formation, member, group, or supergroup.

lithology xs:string Text (possibly formatted with formal syntax) description of the

GeologicUnit's lithology.

geologicHistory xs:string Text (possibly formatted with formal syntax) description of the age of the

GeologicUnit (where age is a sequence of events and may include process

and environment information).

observationMethod xs:string Metadata snippet indicating how the properties of the feature were

determined. ObservationMethod is a convenience property that provides a

quick and dirty approach to observation metadata. Example values might

include ‘field observation by author’, ‘compilation from published maps’,

‘air photo interpretation’.

positionalAccuracy xs:string Quantitative values define the radius of an uncertainty buffer around a

mappedFeature (eg: a positionAccuracy of 100 m for a line feature defines

a buffer polygon of total width 200 m centered on the line).

source xs:string Text describing feature-specific details and citations to source materials,

and if available providing URLs to reference material and publications

describing the geologic feature. This could be a short text synopsis of key

information that would also be in the metadata record referenced by

metadata_uri.

http://www.w3.org/XML/Schema/

14

Name Type Notes
geologicUnitType_uri xs:AnyURI URI referring to a controlled concept from a vocabulary defining the

GeologicUnit types. Mandatory property - if no value is provided then a

URI referring to a controlled concept explaining why the value is nil must

be provided.

representativeLithology_uri xs:AnyURI URI referring to a controlled concept specifying the characteristic or

representative lithology of the unit. This may be a concept that defines the

super-type of all lithology values present within a GeologicUnit or a

concept defining the lithology of the dominant CompositionPart (as

defined in GeoSciML) of the unit. Typically this identifier might be used

as the symbol key for a lithologic map portrayal of the geologic unit

features.

representativeAge_uri xs:AnyURI URI referring to a controlled concept specifying the most representative

stratigraphic age interval for the GeologicUnit. This will be defined

entirely at the discretion of the data provider and may be a single event

selected from the geologic feature's geological history or a value

summarizing all or part of the feature's history. Typically, this identifier

might be used as a symbol key for a geologic-age-based portrayal of the

geologic unit features.

representativeLowerAge_uri xs:AnyURI URI referring to a controlled concept specifying the most representative

younger value in a range of stratigraphic age intervals for the

GeologicUnit. This will be defined entirely at the discretion of the data

provider and may be a single event selected from the geologic feature's

geological history or a value summarizing all or part of the feature's

history.

representativeUpperAge_uri xs:AnyURI URI referring to a controlled concept specifying the most representative

older value in a range of stratigraphic age intervals for the GeologicUnit.

This will be defined entirely at the discretion of the data provider and may

be a single event selected from the geologic feature's geological history or

a value summarizing all or part of the feature's history.

specification_uri xs:AnyURI URI for a complete description of the geologic unit cropping out within

the extent of the feature’s geometry. Preferred representation is a

GeoSciML GeologicUnit feature instance. Mandatory property - if no

value is provided then a nil reason URI explaining why the value is nil

must be provided.

metadata_uri xs:AnyURI URI referring to a metadata record describing the provenance of data.

genericSymbolizer xs:string Identifier for a symbol from standard (locally or community defined)

symbolization scheme for portrayal.

shape GM_Object,

(GM_polygon)

Geometry defining the extent of the feature of interest.

In GeoSciML terms GeologicUnitView features are instances of MappedFeature with key property

values from the associated GeologicUnit feature summarized in text fields (data type xs:string) for

human data consumers, with standard identifiers for geologic unit type, representative lithology,

and geologic age. The specification_uri identifies a description resource specific to the geologic unit

cropping out in the extent of the polygon (or other) geometry of the feature. The specification_uri

should dereference to yield a formally-encoded representation of the geologic unit, ideally in

GeoSciML for interoperability. Properties populated by identifiers are suffixed with '_uri' and

contain URIs referring to other resources, for example controlled concepts in published

vocabularies.

15

3 Deployment Cookbook
Once geologic map data is automated into a structured digital form, publication of the data for

access as an Open Geospatial Consortium (OGC) web map service (WMS) or web feature service

(WFS) is a three-step process:

1. Extract the data from its source data set

2. Transform the data to an interchange format

 In the context of this cookbook, the GeoSciML-portrayal schema constitutes the

appropriate interchange format

3. Load the transformed data into whatever sort of data store is most convenient for the

server implementation of the OGC WMS and WFS

This process is commonly called ‘ETL’.

There exists a broad spectrum of approaches to the ETL process. We focus in this tutorial on what

we deem to be a common situation in which the source data is in a database feature class (possibly

in an ESRI geodatabase, shape file, or PostGIS table) with one record for each geometric feature

(line or polygon), each feature has either a link to a description table that contains the required

elements for the interchange format, or includes fields specifying required content in each record.

Source information for the map data and geologci unit descriptions is also required.

The most difficult part of the ETL process is typically determining what representative lithology,

age, younger age and older age categories from a standard vocabulary to assign to each geologic

unit. OneGeology conformance proscribes that these vocabularies should be the CGI

SimpleLithology vocabulary for lithology and the International Stratigraphic Commission Geologic

Time Scale 2009 for age (see vocabulary links at http://resource.geosciml.org/).

3.1 Mapping from source data
The following outline describes the basic ETL workflow:

1. Determine which fields in the source data contain the information that is to be delivered in

the interchange format fields. Multiple source fields may be combined into single

interchange fields, and a single source field may impact values in multiple interchange

fields.

2. Determine what steps are necessary to get the content into the interchange format. This

may involve some calculation, such as concatenating text from multiple fields to populate

requisite fields in the interchange format. Use of the standard vocabularies for

interoperability will likely require mapping vocabulary terms in the source data to

identifiers for concepts in the controlled vocabularies for the fields that require URIs (see

next section).

3. Set up a query to generate a table with field names exactly matching the field names in the

interchange schema. In some cases it may be convenient to generate the interchange

schema table in several steps, populating subsets of the fields each time. It may also be

useful to generate a table with unique combinations of contact, fault, or geologic unit

16

properties from the source data, and map each combination to corresponding properties in

the interchange format. Depending on individual situations, the unique descriptions can be

identified using the specification_uri, name, or genericSymbolizer field; identifiers in this

field can then be used to join the interchange format properties with individual features.

4. The table of unique descriptions can then be joined with the geometry elements to generate

the final feature classes for the portrayal view service. ESRI Shapefiles and PostGIS tables

are useful representations for the final feature class that the WMS server will use.

Shapefiles will truncate field names longer than 10 characters, so in order to use them, the

map server must support defining XML element names distinct from data table field names

for element names that are longer than 10 characters.

5. Set up the configuration for the WMS server. This procedure will be specific to the

particular server implementation that is being used. Procedures for deployment using

GeoServer and ArcGIS server are discussed in Appendices A and B respectively.

6. Create metadata for the dataset and its service distribution and load it into a catalog server

to make the serviced discoverable.

3.1.1 Interchange formats

This cookbook describes deploying services using GeoSciML-portrayal XML as the information

interchange format. Features provided by these services have content structured according to an

appropriate GeoSciML-portrayal schema. This content is accessed either through WMS

getFeatureInfo requests or through WFS getFeature requests.

The GeoSciML-portrayal feature classes detailed in Section 2 implement three schemas content

models:

 Table 1 specifies the content for the GeoSciML-portrayal ContactView schema

 Table 2 specifies the content for the GeoSciML-portrayal ShearDisplacementStructureView

 Table 3 specifies the content for the GeoSciML-portrayal GeologicUnitView

By entering geoscience data into an XML document that implements these content models using

the schema at http://schemas.geosciml.org/geosciml-portrayal/1.0/, one is creating an interchange

document.

3.1.2 Schema mapping in ESRI ArcGIS

This section provides an example of schema mapping in ESRI ArcGIS, using ArcMap, ArcCatalog,

and ArcToolbox. The procedure requires connecting to the spatial data container (file geodatabase,

shapefile, or SDE database), creating a new feature class using the geosciml-portrayal schema if

necessary, and loading data from the source dataset into the geosciml-portrayal-schema feature

class.

1. Open ArcCatalog

2. Locate or create a spatial database that will be used to host your web services in accordance

with the GeoSciML-portrayal schema

17

a. Sometimes it’s easier to create a new database in accordance with the GeoSciML-

portrayal schema; other times, it’s better to create a new feature class within an

existing database. The conditions needed to make this determination depend on

individual context, and beyond the scope of this document.

3. Connect to the desired spatial database under Database Connections (Figure 5)

4. In the Spatial Database Connection window, specify the location and (if necessary) the

credentials needed to access the desired spatial database. Click OK when finished.

5. After you have connected to the spatial database you intend to use for your services, right-

click the desired database; in the context menu that appears, click New > Feature Class…

This will bring up the New Feature Class dialogue box.

a. In the New Feature Class dialogue box, type the name for your feature class (this is

not the name of the web service). Use the pulldown menu to select the appropriate

Type of feature geometry for the data you are going to publish. When you are

finished filling out the form, click Next. Note that if you are loading into a shapefile,

field names longer than 10 characters will be truncated; aliases assigned to the

fields must contain the complete geosciml-portrayal field name.

b. Choose the coordinate system for your feature class.

i. For the purposes of interoperability, WGS 1984 is the coordinate system

required by OneGeology. To select the WGS 1984 coordinate system, navigate

to the Geographic Coordinate System > World directory and click the WGS

1984 coordinate system.

When you have located the desired coordinate system, click Next.

c. Specify the resolution for your feature class. The XY tolerance defaults to

0.000000008983153, which is fine for most applications, but may be changed if

necessary by entering an appropriate value into the XY Tolerance field.

When finished, click Next.

d. Specify the Configuration keyword for your feature class.

i. The default Configuration keyword is fine for most database storage

architectures.

When finished, click Next.

Figure 5: Adding a Spatial Database

Connection in ArcCatalog

18

e. Enter appropriate field headings under the Field Name column; specify the

parameters for each field by entering appropriate values in the Data Type column

and in the Field Properties section (Figure 6).

i. To comply with GeoSciML-portrayal, all field names and associated

parameters must conform exactly to the GeoSciML-portrayal schema that is

appropriate for your dataset. This includes capitalization, spacing,

underscores, field lengths, and cardinality.

Appropriate values can be found in Section 4, GeoSciML-Portrayal Feature

Types.

When done, click Finish.

Your new Feature Class, structured by the appropriate GeoSciML-portrayal schema, will appear

in the spatial database you selected or created above.

Next, you will use ArcToolbox to import and map your existing data into the new feature class you

just selected or created above.

1. Open ArcCatalog

Figure 6: Step 5E - Entering GeoSciML-

portrayal schema field names and parameters

19

2. On the menu bar of ArcCatalog, click the ArcToolbox button

3. In ArcToolbox, click Data Management Tools > General > Append

4. In the Append window (Figure 7), you need to perform a number of tasks:

a. Specify the Input Dataset. This will be your source data that does not conform to the

GeoSciML-portrayal schema

b. Specify the Target Dataset. This will be the Feature Class you created above

c. Change the default Schema Type to NO_TEST. This last instruction is very

important; it allows you to perform the schema mapping

d. For each field in the Field Map (optional) table, map your Input Dataset to the

Target Dataset:

i. Right-click a target field in the Field Map (optional) table

ii. In the context menu that appears, click Add Input Field

iii. In the dialog box that appears, select the corresponding field from your Input

Dataset

e. Repeat steps i-iii for every field in the Target Dataset

f. When finished, click OK

5. Repeat Step 4 in this list for each dataset you wish to deploy as a web service.

You are now ready to deploy your services.

Figure 7: The Append window

20

3.1.3 Schema mapping in SQL

If you have multiple tables that you need to map into a single schema, it may be easier to write a

SQL query to do the mapping. The following example demonstrates a schema mapping query,

written in Postgres-flavor SQL (minor modifications may be necessary for other SQL

environments). The source schema is the USGS/AASG National Cooperative Geologic Mapping

Program NCGMP09 database schema (Haugarud et al., 2010), and the target is a GeoSciML-

portrayal GeologicUnitView. This is meant as an illustrative example of the kind of processing

that may be required. The level of difficulty in the schema mapping is largely determined by how

similar the internal data model schema is to the GeoSciML conceptual model, and how much

content the data provider wishes to make available in the portrayal view.

This example SQL query creates a table that has fields conforming to the GeologicUnitView for the

geosciml portrayal scheme. The SQL is a PostGIS dialect, so field names that are not all lower case

are enclosed in quotes, and constant values are explicitly types (e.g. ‘::text’). ‘mapunitpolys’ (mup),’

datasources’, ‘descriptionof-mapunits’ (dmu) are tables from the source NCGMP09 database,

1 CREATE TABLE sde.geologicunitview As

2 SELECT

3 mup.objectid as objectid,

4 mup.mup_id AS identifier,

5 dmu.description AS name,

6 mup.notes AS description,

7 'Geologic Unit'::text AS "geologicUnitType",

8 'Not Specified'::text AS rank,

9 polyextattr.lith6name AS lithology,

10 dmu.age AS "geologicHistory",

11 (datasources.source::text || ' '::text) || datasources.notes AS source,

12 'http://…/cgi/geologicunittype/0008'::text AS "geologicUnitType_uri",

13 polyextattr.lithuri AS "representativeLithology_uri",

14 polyextattr.ageuri AS "representativeAge_uri",

15 mapunitages.ageyoungerterm AS "representativeLowerAge_uri",

16 mapunitages.ageolderterm AS "representativeUpperAge_uri",

17 'http://www.opengis.net/def/nil/OGC/0/missing'::text AS specification_uri,

18 'http://catalog.usgin.org/geoportal/…'::text AS metadata_uri,

19 mup.mapunit AS "genericSymbolizer",

20 shape::geometry as shape

21 FROM mapunitpolys AS mup

22 LEFT JOIN polyextattr ON mup.mapunitpolys_id = polyextattr.ownerid

23 LEFT JOIN datasources ON mup.datasourceid = datasources.datasources_id

24 LEFT JOIN descriptionofmapunits as dmu ON mup.mapunit = dmu.mapunit

25 LEFT JOIN mapunitages ON mup.mapunit = mapunitages.mapunit;

Code Example 1: PostGIS SQL query to produce GeoSciML-portrayal view for map unit polygons.

http://pubs.usgs.gov/of/2010/1335/pdf/usgs_of2010-1335_NCGMP09.pdf

21

abbreviated as indicated in the query. ‘poly-extattr’ and ‘mapunitages’ are Postgres views that

aggregate lithology and age properties correlated with polygons or map units respectively. The

source data is a regional dataset that correlates lithology and age categories at the polygon level to

document lithologic and age variation within the map units. This information is contained in the

‘extendedattributes ‘ and ‘geologicevent’ tables in the source dataset (See NGCMP, 2010 or

http://ngmdb.usgs.gov/Info/standards/NCGMP09/ for details on the input data structure).

3.1.4 Notes on schema mapping in SQL

Line numbers refer to numbered lines of text in Code example 1.

 Line 1. Result table is placed in ESRI sde schema in PostGIS database.

 Line 3. For ESRI Spatial Database Engine (SDE) to recognize the table as a feature class

that may be used to source a service, an integer unique-value field must be present. In this

case the field from the source dataset is used because it serves the same purpose there. This

field does not need to be set up as an autoincrement field because the resulting table is a

read-only view of the data. The ObjectID field will likely be placed at the last column in the

table for better interoperability with systems that do not require such a field.

 Line 4. Unique polygon identifiers from the source dataset are carried into the interchange

format view.

 Line 7. Source data map units are not categorized into specific unit types (e.g.

lithostratigraphic, chronostratigraphic, geophysical, etc.), so this field gets a constant value

‘Geologic Unit’, which is the preferred label for the corresponding concept in the CGI

Geologic Unit Type vocabulary.

 Line 8. Likewise, rank is not assigned for the regional geologic units in the source dataset,

so this is a constant that is the preferred label (‘Not Specified’) for the corresponding

concept in the CGI Strati-graphic Rank vocabulary.

 Line 9, 10. Text descriptions of lithology and the age of the unit are derived from

corresponding fields in the source data. The lithology description is mapped at the

individual polygon level (via the polyextattr Postgres view), note the JOIN in line 22 that

uses the .mapunitpolys_id as the foreign key. The age text description is mapped at the

map unit level, note the JOIN in line 24 that uses the .mapunit field as the foreign key.

 Line 11. The text for the source field in the portrayal scheme is calculated by concatenating

two fields (.source and .notes) from the datasources table in the input dataset.

 Line 12. Since all the map units are classified simply as ‘Geologic Unit’, this URI is also a

constant value from the CGI Geologic Unit Type vocabulary.

 Line 13, 14. Representative lithology and age categories are assigned on a polygon by

polygon basis, thus the polyextattr table is the source of these URIs. Note the JOIN in line

22 that uses the .mapunitpolys_id as the foreign key.

 Line 15, 16. Younger and older age bounds are assigned by map unit (not at the individual

polygon level), so these fields are sourced from the mapunitages aggregation query in the

database; this query uses the extendedattributes table to join map-units with geologicevent

records that contain the lower and upper age bounds for the unit.

http://ngmdb.usgs.gov/Info/standards/NCGMP09/
http://resource.geosciml.org/Vocab2011html/GeologicUnitType201107.html
http://resource.geosciml.org/Vocab2011html/GeologicUnitType201107.html
http://resource.geosciml.org/Vocab2011html/StratigraphicRank201012.html
http://resource.geosciml.org/Vocab2011html/GeologicUnitType201107.html

22

 Line 17. specification_uri is a link to a more complete description of the geologic unit that

crops out in the polygon’s extent. This description can be viewed as a resource in the

context of web architecture. The intention of the GeoSciML design team was that this URI

should dereference to return a full Geo-SciML GeologicUnit element instance. With the use

of content negotiation on the web, this description might also have representations as a web

page or other structured description (rdf, owl…). In the example instance, a more complete

description is not available and an OGC nil URI is used to indicate that the resource is

missing (does not exist).

 Line 18. metadata_uri identifies a metadata resource that contains more complete

information on the provenance of the information in the feature element. This may be a

metadata record that is scoped to the individual feature, or may identify a metadata record

describing some collection of polygons that have similar enough provenance to document

together. The text in the source field (Line 11) should be a succinct summary of the

information in this metadata record pertinent to the containing feature.

 Line 19. The genericSymbolizer field should contain an identifier for the symbol used to

display this poloygon in the default portrayal (legend) chosen by the data provider for the

gsmlp:GeologicUnitView instance in the containing feature collection. This field can be used

to capture the map unit assignment and portrayal color scheme from the original data from

which the GeologicUnitView polygon was digitized. The legend may be encoded in an

accompanying Styled Layer Descriptor (SLD) file, and if such an SLD exists it should be

recorded as a related resource in the metadata record specified by metadata_uri.

 Line 20. The shape field contains a representation of the geometry of the outcrop area

described by the GeologicUnitView instance. The content of this field will be managed by

the GIS and WMS server, and thus will generally not need to be manipulated by users

outside the GIS environment. The shape field may need to be cast into a recognized

geometry field in order to get PostGIS and ESRI SDE to recognize the output as a feature

class. In our configuration at AZGS, we ended up using this:

‘st_geometryfromtext(ST_AsText(shape)::text, 4326)::geometry as shape’

More expert PostGIS users may have a better solution for this problem.

3.2 Vocabulary mapping
There are many possible approaches to mapping terms from one vocabulary to another.

One situation in which a standard process can be defined involves a controlled vocabulary used to

populate a field in the source data, and that field maps directly to a field in the interchange

format. For instance: if the source data contains a ‘dominant lithology’ field, the information in this

field can be used to populate the ‘representativeLithology_uri’ for a GeologicUnitView feature.

Recommended procedure:

1. Produce a table of the unique values in the source data

2. Add a column to this table for the corresponding element in the target interchange scheme

23

3. Determine the best matching value from the interchange vocabulary for each term in the

source vocabulary

In general: the most specific term from the interchange vocabulary that completely subsumes

(encompasses) the meaning of the term in the source vocabulary should be used.

If the source vocabulary has terms that are more specific than the controlled vocabulary, there will

be some information lost in this process, but the original source terminology can be preserved in

free-text description fields in the interchange document. Sample free-text fields that may be used

to preserve source vocabulary information are as follows:

 Lithology

 geologicHistory

Remember, the primary purpose of the controlled vocabulary fields is for data integration and use

as search criteria, likely by non-expert users.

In some cases, unique values from a combination of multiple source data fields may be necessary

to define mapping to interchange concepts, particularly for the following interchange fields:

 representativeAge_uri

 representativeLithology_uri

 genericSymbolizer

The procedure is the same, but any unique values query will involve more than one source field

and multiple-field joins will be necessary to construct queries generating the output schema

content.

Standard vocabularies are listed in the accompanying Excel Workbook.

3.3 Excel Workbook template
The accompanying Microsoft Excel Workbook provides spreadsheets containing the content models

for the description properties associated with geologic contacts, faults or shear zones, and geologic

units in appropriate GeoSciML-Portrayal schemas.

These spreadsheets do not include geometry fields that are necessary for an actual GIS feature

class for the corresponding ContactView, ShearDisplacementStructureView, and

GeologicUnitView features. Rather, they provide a template for compiling the necessary

descriptions (combinations of attributes) that can then be joined with a GIS feature class to

produce the dataset for feature web service deployment.

The specification_uri in each feature class provides a link to structured representation of the

geologic feature that is intended to be a GeoSciML feature.

The metadata_uri provides a link to a structured metadata record maintaining complete

provenance information for features.

24

See the notes tab in the workbook for additional information describing the GeoSciML Portrayal

feature classes and the work-sheets included in this document.

3.4 Configuring OGC services
GeoSciML-portrayal is intended to support map services for online viewing and exploration of

geologic data, and the creation of mash-ups integrating data from different servers and possibly

different thematic domains.

The OGC WMS specification includes a ‘getFeatureInfo’ operation that returns a description of a

map feature at a user-identified point on the map. The operation returns a document determined

by the server configuration. A variety of different formats may be offered, and specified by a

request parameter. For GeoSciML-Portrayal services, an XML document conforming to the

GeoSciML-Portrayal XML schema should be offered. Other getFeatureInfo response formats may

also be offered.

Server software that implements the OGC Web Map Service will typically also allow parallel

deployment of an OGC Web Feature Service with no additional effort. The XML provided by the

feature service is the same as that provided in the WMS getFeatureInfo response formats.

The GML simple feature profile requires that each feature include a gml:id attribute. According to

the GML specification, this identifier must be an alphanumeric string that has an alphabet letter

as its first character. These ID’s can be generated from the primary key in the data table used to

compose the features for the map service. If data are coming from an ArcGIS environment, the

ObjectID required for any ArcGIS feature class can be used to construct the gml:id. If no primary

key is present in the feature class for the service, one will have to be added to source the gml:id

property. Technically, the gml:id is meant to be unique within the scope of a feature collection from

a particular service to enable internal cross referencing within a single WFS response document or

to allow queries to retrieve a feature using the gml:id.

Server configuration using GeoServer and ESRI ArcGIS Server is described in Appendices A and B

as examples of the workflow necessary to set up a GeoSciML-Portrayal service. Other

implementations exist, and the details of the procedure will change as new versions of the server

software are released.

4 Styling
Part of the process of deploying a web service includes defining a map legend.

ESRI ArcGIS Server provides a number of tools to define a map legend, but if you are using

GeoServer to deploy your data as a web service, you will need an OGC Styled Layer Descriptor

(SLD) file to define your map legend.

http://www.opengeospatial.org/standards/wms/

25

An SLD is an XML document that defines a mapping from some property of an OGC feature to a

symbol to use for portrayal. The correlation of feature property values with symbols used to

portray the feature defines a map legend.

SLD files for portrayals using the CGI simple lithology and ICS 2009 time scale URIs are available

at the following web location:

http://schemas.usgin.org/schemas/slds/

Aside from those SLDs made available at the above web location, it is possible to use a basic text

editor to manually create an SLD. Manually creating an SLD for a geologic map is not a trivial

proposition, and instructions for creating an SLD file manually are out of the scope of this

document. The GeoServer online documentation provides some guidance for creating SLD’s

manually. The following section describes software for creating an SLD file based on symbology in

an ArcMap project layer.

4.1 How to Create a Styled Layer Descriptor (SLD) using Arc2Earth
Arc2Earth is a plugin for ArcGIS that is available in several different editions. The Community

edition is free and provides access to the SLD generator. Arc2Earth is available at

http://www.arc2earth.com/.

1. Install the Arc2Earth plugin

2. Open ArcMap

3. Open the ArcMap project containing the layer or layers to export as SLDs

4. Select the desired layer in the catalog tree

5. In the Arc2Earth toolbar, click Export > Export Layer Style to SLD

6. Navigate to the appropriate location

7. Click Export

After your SLD has been exported, open the .sld in any XML or text editor. Note that the

Arc2Earth plug-in adds an outline (stroke) to polygon layers. If you are working with polygon

layers, the stroke may need to be tailored or removed manually. Also, it may be necessary to

customize the heading for your SLD, or change the schema location.

Note: though .sld files, like any XML document, may be edited by a generic text editor, such as the

Notepad or Wordpad text editors included with Windows operating systems, some text editors are

better suited to working with XML documents than others. One example of a free-and-open-source

text editor designed with XML support is Notepad++ (be sure to get the XML tools plugin).

Below is a snippet of an SLD created using Arc2Earth (Code Example 2).

http://schemas.usgin.org/schemas/slds/
http://docs.geoserver.org/stable/en/user/styling/sld-introduction.html
http://www.arc2earth.com/
http://notepad-plus-plus.org/
http://sourceforge.net/projects/notepad-plus/forums/forum/482781/topic/3717096

26

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor xmlns:xlink='http://www.w3.org/1999/xlink' xmlns:gml='http://www.opengis.net/gml'
xmlns:ogc='http://www.opengis.net/ogc' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' version='1.0.0'
xsi:schemaLocation='http://www.opengis.net/sld StyledLayerDescriptor.xsd' xmlns='http://www.opengis.net/sld' >
 <NamedLayer>
 <Name><GeologicAge></Name>
 <UserStyle>
 <FeatureTypeStyle>
 <Rule>
 <Name><Holocene></Name>
 <Title><Holocene></Title>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>representativeage_uri</ogc:PropertyName>
 <ogc:Literal><http://resource.geosciml.org/classifier/ics/ischart/Holocene></ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill" >#f9f97f</CssParameter>
 <CssParameter name="fill-opacity" >1</CssParameter>
 </Fill>
 <Stroke>
 <CssParameter name="stroke" >#f0f0f0</CssParameter>
 <CssParameter name="stroke-width" >0.4</CssParameter>
 <CssParameter name="stroke-opacity" >1</CssParameter>
 </Stroke>
 </PolygonSymbolizer>
 </Rule>
 <Rule>
 <Name><Quaternary></Name>
 <Title><Quaternary></Title>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>representativeage_uri</ogc:PropertyName>
 <ogc:Literal><http://resource.geosciml.org/classifier/ics/ischart/Quaternary></ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill" >#f9f97f</CssParameter>
 <CssParameter name="fill-opacity" >1</CssParameter>
 </Fill>
 <Stroke>
 <CssParameter name="stroke" >#6e6e6e</CssParameter>
 <CssParameter name="stroke-width" >0</CssParameter>
 <CssParameter name="stroke-opacity" >1</CssParameter>
 </Stroke>
 </PolygonSymbolizer>
 </Rule>

Code Example 2: Styling in XML

27

5 Deploying Your Web Service
If you have completed the following steps, you are ready to deploy your web service in a GeoServer

environment.

1. You meet the prerequisites detailed in Section 1.3, Cookbook Prerequisites

2. You have successfully mapped your data to an appropriate GeoSciML-portrayal schema, as

described in Section 3, Deployment Cookbook

3. You have symbolized your data, as described in Section 4, Styling.

4. If you have followed all previous steps in this cookbook, you should now be ready to deploy

your GeoSciML-portrayal web service.

The overall process of web service deployment is as follows:

1. Configure server software to provide web services

2. Make your data accessible to the server

3. Configure the desired server software to deploy your data as a web service

4. Test your web service (see Section 6, Testing Your Web Service, for more details)

Details of the actual deployment process depend to a large degree on the individual context; to

attempt to account for all possible scenarios is beyond the scope of this cookbook. Instead, this

cookbook will provide examples of two common web service deployment patterns:

 Web service deployment in a GeoServer environment with data in a PostGIS database

(Appendix A)

 Web service deployment in an ArcGIS Server environment with data in an ESRI file

geodatabase (Appendix B)

6 Testing Your Web Service
Web service should be tested by connecting and accessing data using your preferred GIS

application. For OGC services the first test the ‘getCapabilities’ request offered by any service to

describe the capabilities of an individual service instance. Further testing requires connecting to

the service with client software and accessing data.

6.1 Web Service Requests
All OGC services offer a GetCapabilities request that returns an XML document describing the

capabilities of the service instance (Figure 8).

To perform a GetCapabilities request, paste the capabilities URL in a web browser; this should

return a capabilities document in your web browser. Different browsers may display the XML

response differently. To see the unformatted response document, use the ‘view page source’

function in your browser, generally accessible via a right-click in the content of the displayed web

28

page. The service request consists of a service endpoint part, and the OGC request part. Here are

some sample GetCapabilities requests:

http://services.azgs.az.gov/ArcGIS/services/aasggeothermal/ALBoreholeTemperatures/MapS

erver/WFSServer?request=GetCapabilities&service=WFS [ArcGIS WMS]

http://catalog.usgin.org/geoserver/ows?service=wfs&version=1.1.0&request=GetCapabilities

[GeoServer WFS].

In both examples, bolded text constitutes the service endpoint. This has a host name part that

identifies a server (e.g. services.azgs.az.gov, catalog.usgin.org), and a local path used by the host to

identify the service resource (e.g. ‘/ArcGIS/services/aasggeothermal/…./WFSServer’,

‘/geoserver/ows’). The text after the ‘?’ constitutes the service request, which consists of a series of

key=value pairs, delimited by ‘&’ characters. The service endpoint string will be specific you your

particular implementation environment, but the request part will be the same for any service. In

order to test your web service, you will need to determine the service endpoint of your web service

and append a service request to it.

Once you have accessed the capabilities document of your web service and copied the service

endpoint, you can proceed to the Section 7.2.1 or 7.2.2. Sections 7.2.1 and 7.2.2 contain instructions

for accessing a web service via GIS applications. Section 7.2.1 will describe the process of accessing

a web service via ESRI ArcCatalog for use in the widely used ArcGIS environment. Section 7.2.2

describes how to access an OGC web service using the free-and-open-source desktop GIS

application uDig.

Figure 8: A typical capabilities document returned by a GetCapabilities request in a web

browser

http://udig.refractions.net/

29

If you are not sure how to access your web service, here is a short list of GIS software that

supports web services:

 ArcGIS Desktop

 ArcGIS Explorer

 ArcGIS Online

 Grass GIS

 gvSIG

 OpenLayers

 Quantum GIS

 uDig

6.2 Adding a Web Map Service in ArcCatalog
1. Open ArcCatalog

2. In the Catalog Tree, expand GIS Servers

3. Click Add WMS Server. See the glossary for more information about WMS.

4. Paste the service endpoint (see Section 6, Testing Your Web Service) for your web service

into the URL field

5. It may be necessary to navigate back to GeoServer for your URL. On the GeoServer

Welcome page, Service Capabilities are listed on the right. Click on the latest version of

WMS or WFS, whichever service you wish to use.

6. When redirected, copy the URL (from beginning up to the question mark) and paste into

the URL field of Add WMS Server in ArcCatalog:

http://services.azgs.az.gov/geoserver/ows?service=wms&version=1.3.0&request=GetCap

abilities

7. Click Get Layers

8. Click OK

9. Add the desired layer(s) to ArcMap

6.3 Adding a Web Service in uDig
1. Open uDig. The software can be obtained at: http://udig.refractions.net/

2. Create a new map, or open an existing map to which you would like to add the web service

3. On the upper menu bar, click Layer > Add…

4. In the window that appears, click Web Map Server or Web Feature Server, as appropriate;

click Next

5. Paste the service endpoint in the URL field; click Next

6. In the Resource Selection window that appears, select all layers you wish to add. When you

are done, click Finish

http://www.esri.com/software/arcgis/arcgis-for-desktop/index.html
http://www.esri.com/software/arcgis/explorer/index.html
http://www.arcgis.com/home/
http://grass.fbk.eu/
http://www.gvsig.org/web/home/projects/gvsig-desktop
http://www.openlayers.org/
http://www.qgis.org/
http://udig.refractions.net/

30

7 Registering with OneGeology and Submitting your Service
To submit your service to OneGeology, you will first need to register your organization on their

website by filling out their registration form. If the data provider is able to host their own service,

visit this link:

http://www.onegeology.org/technical_progress/data_coordination.cfm

If the data provider would prefer a ‘buddy’ serve their data, fill out this form:

http://www.onegeology.org/technical_progress/buddy_coordination.cfm

Next, you will need to send an email to onegeology@bgs.ac.uk with the draft URL of the proposed

WMS service. Include this information: Name of Geographic Area, Name of Data Provider, Name

of Service Provider.

You will be contacted by the OneGeology secretariat with feedback, and confirmation of receipt.

Appendix A: Deploying GeoSciML-Portrayal Web Services in

GeoServer
This appendix provides a tutorial of GeoSciML-portrayal web service deployment in a GeoServer

environment. This procedure assumes that you have a working GeoServer implementation with

Figure 9: the GeoServer Web Administration Interface

http://www.onegeology.org/technical_progress/data_coordination.cfm
http://www.onegeology.org/technical_progress/buddy_coordination.cfm

31

PostGIS, and that you have administrative privileges necessary to create workspaces, stores and

layers for GeoServer to work with.

A.1. Logging in
To deploy a web service in the GeoServer environment, your first step is to log in to the Web

Administration Interface for the GeoServer instance you will be using to deploy your data as a web

service (Figure 8). The Web Administration Interface is, as the name suggests, a browser-based

user interface capable of administering server software remotely via your Internet connection.

In order for your services to be publicly accessible, configure the host and port of your GeoServer

instance in such a way that your GeoServer instance can be accessed remotely. To access the Web

Administration Interface of a GeoServer instance, open your web browser and enter the

appropriate web address into the navigation bar. GeoServer is usually installed such that the

administrative interface can be accessed at a URL with the following address pattern using a web

browser:

http://<host>:<port>/geoserver/web/, <port> is usually 8080, and <host> is the name or IP address

of the server.

The default account settings for GeoServer are as follows:

Username: admin

Password: geoserver

For security reasons, it is recommended that you change your password to something more secure

as soon as possible.

A.2. Service-Level Metadata
Within the GeoServer Web Administration Interface (Figure 8), click Contact Information, under

About & Status.

This brings you to a Contact Information form (Figure 9) in which you can provide contact

information for your GeoServer instance. The information entered here becomes service-level

metadata for the web service that is accessed by the OGC GetCapabilities request. Consequently,

Contact Information entered here should be as precise and comprehensive as possible.

32

If you wish to deploy your service in compliance with OneGeology standards, your server-level

metadata will need to meet very specific requirements. See Appendix C.1 for details.

A.3. Creating a Workspace
1 After entering contact information for your GeoServer instance, you will need to create a

workspace for your web service. The workspace is the equivalent of the service name when

deploying a web service in the ArcGIS Server environment.

2 If you wish to deploy your service in compliance with OneGeology standards, your workspace

will need to meet very specific requirements. See Appendix C.2 for details.

3 On the left side of the GeoServer Web Administration Interface, under Data, click

Workspaces. This will bring you to the Workspaces page, wherein you can manage existing

workspaces and create new workspaces.

4 Click Add New Workspace. This will bring you to the Edit Workspace page for your new

workspace.

5 Two fields are present on the Edit Workspace page:

6 Name: The service title; may contain spaces or special characters; usually named according to

the following convention:

7 GeographicArea_Theme, where GeographicArea is the overall region containing the map

extent of the web service

Theme is an indicator of the kinds of features

8 Namespace URI: A URI associated with your project

Figure 10: GeoServer Contact Information

33

9 When you are finished, click Save.

A.4. Connecting to your PostGIS Database
1 Having created a new workspace, you will now create a store, or database connection, for

your service.

2 On the left side of the GeoServer Web Administration Interface, under Data, click Stores.

This will bring you to the Stores page. On the Stores page, click Add New Store.

3 This will bring you to the New Data Source page (Figure 10).

4 On the New Data Source page, choose PostGIS as the data source by clicking PostGIS. This

will bring you to the New Vector Data Source page. Complete the following steps:

5 Select a Service Title from the Workspace drop down menu. Select the workspace you

created in Appendix A.3

6 Type a name for your data store in the Data Source Name field (spaces are acceptable

here); add a description if desired

7 Make sure that the Enabled checkbox is checked

8 Set the Connection Parameters for your PostGIS data source; if the PostGIS data source is

located on a remote server, you will need to provide the appropriate host, port, database

name, user name, and password to access it:

9 Host: use “localhost” if the PostGIS data source is on the same machine as your GeoServer

instance; more specific host information will be necessary if your PostGIS data source is on

a remote server

10 Port: default is 5432

11 Database name: this information will depend on the PostGIS data source

12 Schema: this information will depend on the PostGIS data source

13 User name: this information will depend on the PostGIS data source

14 Password: this information will depend on the PostGIS data source

15 When finished, click Save.

A.5. Adding Layers to a Workspace
Having created a workspace and specified a PostGIS data source for your web service, you will now

populate your web service with data layers from your workspace.

On the left side of the GeoServer Web Administration Interface, under Data, click Layers. This

will bring up the Layers page.

On the Layers page, click Add a new resource. This will take you to the New Layer page.

On the New Layer page, use the pulldown menu at the top of the page to select the data source you

specified in Appendix A.4. Doing so will populate the New Layer page with a list of layers that may

be published; click Publish to make the associated layer publicly accessible to anyone who connects

to your web service.

**Note: You may publish the same layer multiple times. To do so, click Publish again.

34

After clicking Publish, the Edit Layer page for the corresponding layer automatically appears

(Figure 12). The Edit Layer page contains two tabs, Data and Publishing.

A.4.1. The Data tab of the Edit Layer page

The Data tab contains fields within which you may specify the title, abstract, bounding box, spatial

reference system, keywords, and metadata links for each layer in your web service. This

information will be present within the Capabilities document produced by your web service in

response to a GetCapabilities request, so it is very important to enter this information carefully for

each layer in your web service.

If you wish to deploy your service in compliance with OneGeology standards, the information you

enter for your layers will need to meet very specific requirements. See Appendix C.3 for details.

It is recommended to enter the bounding boxes for your service manually, as doing so permits you

to provide a more useful bounding box for your web service.

Figure 11: The Edit Layer page

35

**Note: GeoServer occasionally enters a loop of web errors. To fix this, we recommend restarting

the service on Apache-Tomcat. It also helps to use Mozilla Firefox or Google Chrome for debugging

(rather than Internet Explorer).

A.4.2. The Publishing tab of the Edit Layer page

After populating the fields in the Data tab, click the Publishing tab.

The Publishing tab contains Layer Style settings for the corresponding layer of your web service.

Layer Style settings are dependent on the geometry of the layer (point, line, polygon). See Section

5, Styling, of this document for more details.

Generally, it is faster and more precise to import Layer Style settings from an existing style than

it is to manually specify values for each field in the Publishing tab. To import Layer Style settings

from an existing style, select the desired style from the Available Styles list.

To populate the Available Styles list, you might need to import layer styles from an SLD file. For

further instructions, see Appendix A.5.3, Importing Layer Styles from an SLD File.

When you have populated the fields in the Publishing tab, click Save.

A.5. Importing Layer Styles from an SLD File
On the left side of the GeoServer Web Administration Interface, under Data, click Styles. This will

open the Styles page.

If the Style you want is not listed on the Styles page, you will need to add it to the list by clicking

Add a New Style. This brings you to the Style Editor page.

On the Style Editor page, you have the choice to copy/paste an SLD or upload a .sld XML

document. The Validate button may be used to validate the SLD file against a schema before using

it. Click Submit to add the SLD to the list on the Styles page.

A.6. Finishing Up
Repeat Appendix A.5 until all data you wish to publish has been added to the desired workspace.

When finished, return to Section 7, Testing Your Web Service.

A.7. GeoServer Troubleshooting
Q: I made a change in the database on my server and now the service is not working.

A: Try clearing the cache and reloading GeoServer on the Server Status page (Figure 22). If that

doesn’t work, try hard restarting the service through Apache Tomcat.

Q: Can I use a replicated Feature Class to create a service on Geoserver?

A: No.

36

Q: I set up my services under three separate workspaces. When I connected to the WMS in

ArcCatalog, all the layers appeared as one bundle. Is there a way to separate them out so I can add

them individually?

A: Yes.

Though setting up your services under different workspaces seems to imply that they can be

accessed as discrete services, Geoserver defaults to providing one capabilities document containing

the information for all of the services set up on your instance of GeoServer. To access workspaces

individually, you will need customize your Get request to specify the desired workspace.

For example: the Arizona Geological Survey runs three services on Geoserver

(http://services.azgs.az.gov/geoserver/web/):

 GeologicUnitView

 FaultView

 ContactView

To perform a GetCapabilities request for GeologicUnitView, your GetCapabilities request will

appear as follows:

http://services.azgs.az.gov/geoserver/GeologicUnitView/ows?service=wms&version=1.3.0&re

quest=GetCapabilities

This URL opens the WMS capabilities document for the GeologicUnitView workspace only. A

generic form of the service endpoint for the request is as follows:

http://[host server]/geoserver/[Workspace Name]/ows

Individual workspaces can be added in ArcGIS, as well.

Q: Is it possible to configure GeoServer so that I do not need to use PostGIS?

A: Try installing the ArcSDE plug-in for GeoServer. To do this, you will need to download the

extension from GeoServer’s website. Make sure to match the versions of the extension and

GeoServer.

Q: All of my data are in Shapefiles. Can I deploy a shapefile as a GeoSciML-portrayal service?

A: The problem you will run into is the truncation of field names that occurs in shapefiles. Ideally

you will have a full version of the data in PostGIS. As mentioned in the above document, to be

compliant with GeoSciML-portrayal, you will need to make sure there is no truncation in field

names; they must be an exact match for the GeoSciML-portrayal schema.

Q: I would like to deploy a service using full GeoSciML v.3.0 schema; where can I go?

A: Visit the GeoSciML website at http://www.geosciml.org/.

Q: Why would I want to create a WMS or WFS at all?

http://services.azgs.az.gov/geoserver/web/
http://services.azgs.az.gov/geoserver/GeologicUnitView/ows?service=wms&version=1.3.0&request=GetCapabilities
http://services.azgs.az.gov/geoserver/GeologicUnitView/ows?service=wms&version=1.3.0&request=GetCapabilities
http://www.geosciml.org/

37

A: To display your data in a map format. Map format shows: data relative to its geographical

surroundings, data relative to other data on the same map, data points relative to other data

points in the same dataset (size, quantity, order, etc).

Q: How do I use the ArcCatalog Interoperability Extension?

A: Here is a brief tutorial on connecting to the WFS in ArcCatalog.

1. Open ArcCatalog

2. Enable the Interoperability Extension

 For more information visit

http://www.esri.com/software/arcgis/extensions/datainteroperability/common-

questions.html

3. Click Add Interoperability Connection; this will bring up the Interoperability Connection

dialog box:

1. Click the ‘…’button next to Format and select the appropriate format

2. Paste the service endpoint for the service you want to add into the appropriate field

3. Click the Parameters button. In the window that appears, click the ‘…’ button next

to Table List and select the tables you wish to load. Confirm that the Max Features

box is scaled appropriately

 If you are loading a dataset with 10 million features, the Max Features box

must be scaled to ten million. If you are loading a dataset with three (3) data

points, the Max Features box can be scaled down quite a bit.

4. Click OK in the Interoperability Connection dialogue box.

4. Depending on the size of the dataset, it may take some time to load. When it has loaded,

expand the Connection (you can also rename the connection, which can be helpful).

5. Add your service to ArcMap

Appendix B: Deploying GeoSciML-Portrayal Web Services in ArcGIS

Server
This appendix provides a tutorial of GeoSciML-portrayal web service deployment in a GeoServer

environment.

B. 1 Connecting to your ArcGIS Server instance
1. Open ArcCatalog

2. In the catalog tree, expand GIS Servers by clicking the nearby +

3. Double-click Add ArcGIS Server

4. Click the Manage GIS Services radio button in the Add ArcGIS Server window and then

click Next.

5. Type in the URL for your services and the name of the server, then click Finish.

B. 2 Create an ArcMap Project for your web service
1. Open an instance of ArcMap

http://www.esri.com/software/arcgis/extensions/datainteroperability/common-questions.html
http://www.esri.com/software/arcgis/extensions/datainteroperability/common-questions.html

38

2. Create a blank map

a. Note: there is a one-to-one relationship between .mxd files and services: each .mxd

file, along with all layers it contains, is equal to one web service

3. Add your source data to the map as a layer

a. If you wish to deploy your service in compliance with OneGeology standards, your

layers will need to meet very specific requirements. See Appendix C.3 for details

4. Save your map as a .mxd file

B. 3 Publishing on ArcGIS Server
1. Open ArcCatalog.

2. Navigate to the database connection you set up in Appendix B.1, Connecting to your

ArcGIS Server instance

3. In the catalog tree on the left side of the screen, expand the connection to ArcGIS Server

4. Right-click your server and select Add New Service; this opens a window containing fields

for Service Title and Service Description; if you wish to deploy your service in compliance

with OneGeology standards, your Service Title will need to meet very specific requirements.

See Appendix C.2 for details

a. Specify the appropriate Service Title based on content and map extent

b. Using the pulldown menu, specify whether you are deploying a Web Map Service or

a Web Feature Service

c. Enter an appropriate description for your service in the Description field

d. Click Next

5. Specify the capabilities of your web service

a. Use the checkboxes to indicate which capabilities your web service will support

i. OneGeology requires either WMS or WFS capabilities

1. Specifying WMS or WFS will reveal a form in the Properties box; if

you wish to deploy your service in compliance with OneGeology

standards, this information must be provided in accordance with very

specific requirements. See Appendix C for more details.

2. Alternatively, if you know of a web service capabilities document that

is already compliant with OneGeology standards, you may save this

capabilities document as an XML file and import it

a. To import an external XML document, click Use external

capabilities files and then specify the location of the XML

document you will use

b. To save a capabilities document as an XML document, access

the appropriate capabilities document (described in detail in

Section 7) in your web browser and click File > Save Page As...

b. Click the Use layer names from the map document checkbox

c. Click Next

d. Click Next again

e. Click Finish to start your service

39

i. Note: you will need to log in to your service and Stop your service in order to

edit the capabilities document. Service title cannot be edited after publishing;

you will need to create a new service

Proceed to Section 7, Testing Your Web Service.

B. 4 Troubleshooting ArcGIS Server
Q: How do I connect to the WFS in ArcCatalog?

A: Here is a brief tutorial on connecting to the WFS in ArcCatalog.

1. Open ArcCatalog

2. Enable the Interoperability Extension in ArcCatalog.

a. For more information visit

http://www.esri.com/software/arcgis/extensions/datainteroperability/common-

questions.html

3. Click Add Interoperability Connection

4. A Dialog box appears

a. Click the ‘…’ button next to the Format pulldown menu

i. Select the appropriate type of web service from the dialog

ii. Click OK

b. In the Dataset field, paste the URL of the capabilities document for the service you

wish to add

i. For more information, see Section 7, Testing Your Web Service

c. Click the Parameters button.

i. Click the ‘…’ button next to Table List

ii. Select the tables you wish to load

iii. Confirm that the Max Features box is scaled appropriately

1. If you are loading a dataset with 10 million features, the “Max

Features” box must be scaled appropriately to ten million

2. If you are loading a dataset with three (3) data points, the “Max

Features” can be scaled down quite a bit

iv. Click OK

d. Once the layers have been added under the interoperability connections, you will see

something like this in ArcCatalog

e. Click OK

5. Depending on the size of the dataset, it may take some time to load. When it is finished,

expand the Connection (you can also rename the connection, which can be helpful).

6. Drag and drop the layer into your ArcMap Project.

Q: All of my data are in Shapefiles. Can I deploy a shapefile as a GeoSciML-portrayal service?

A: The problem you will run into is the truncation of field names that occurs in shapefiles. Ideally

you will have a full version of the data in an sde database (or file/personal geodatabase). As

mentioned in the above document, to be compliant with GeoSciML-portrayal, you will need to

http://www.esri.com/software/arcgis/extensions/datainteroperability/common-questions.html
http://www.esri.com/software/arcgis/extensions/datainteroperability/common-questions.html

40

make sure there is no truncation in field names; they must be an exact match for the GeoSciML-

portrayal schema.

Q: I would like to deploy a service using full GeoSciML v.3.0 schema; where can I go?

A: Visit the GeoSciML website

Q: Why would I want to create a WMS or WFS service at all?

A: To display data in a map format. Map format shows: data relative to its geographical

surroundings, data relative to other data on the same map, data points relative to other data

points in the same dataset (size, quantity, order, etc).

Appendix C: OneGeology Web Service Requirements
If you wish to submit your web service to the OneGeology portal, your web service must comply

with OneGeology standards.

This appendix summarizes the service-level and layer-level requirements that must be respected

for compliance with OneGeology standards.

C. 1 Service-Level Metadata Requirements
The following section describes OneGeology standards as they relate to service-level metadata.

When you submit your web service to OneGeology, service-level metadata is harvested into the

portal in the GetCapabilities response document. The minimum requirements for inclusion with

OneGeology (source: http://www.onegeology.org/wmscookbook/2_4_1.html)

Table 4: One-Geology Service-Level Metadata Requirements

Field Description Conditions

Version (1.3.0,

1.1.1)
This will be automatically populated by GeoServer N/A

Title
Required for 2-star service (2-stars); see Section 7.2 for more

information

Required for 2

Stars

Abstract
May include data owner organization, goals, scale of data

and other information

Required for 2

Stars

Access

Constraints

Definition of access constraints, otherwise “none” (2 to 3

Stars)

Required for 2-3

Stars

Keywords
“OneGeology”, “MD_DATE@2012-02-02”,

“MD_LANG@ENG” (3 Stars)

Required for 3

Stars

Data (owner) Full name of data owner organization (not service provider) Required for 2

http://www.geosciml.org/
http://www.onegeology.org/
http://www.onegeology.org/wmscookbook/2_4_1.html

41

Field Description Conditions

provider (2 Stars) Stars

Image Format This will be automatically populated by GeoServer N/A

On-line

Resource
Required by the WMS specification (2 Stars)

Required for 2

Stars

Contact Person
Named Individual or contact within data organization (2 to

3 Stars)

Required for 2-3

Stars

Country Country of the data owner organization (2 to 3 Stars)
Required for 2-3

Stars

Email Address Email address of the named contact (2 to 3 Stars)
Required for 2-3

Stars

Fees
Any fees required to use the WMS Service; otherwise “none”

(3 Stars)

Required for 3

Stars

C. 2 Service Title and Service Name Requirements
This section describes the OneGeology standards that govern web service Title and Name.

Service Title: Conforming to the naming conventions for service title is a 2 star requirement with

OneGeology. Service Titles should contain the following tokens (in order):

[Geographical extent] [Data owner organization] [Language Code] [Scale] [Theme], where:

 Geographic extent: a rough approximation of the extent of the portrayal provided by the

web service

o Generally an ISO three letter country code (such as “USA”) and, if necessary, a

province, such as “USA-KY” for the state of Kentucky

o See http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3 for ISO three-letter country

codes

 Data owner organization code: an acronym or abbreviation for the entity that owns the

data portrayed by the web service

o The data owner organization can be, but is not necessarily, the name of the

organization responsible for deploying the data as a web service

 Language: a two-letter ISO 639-1 code for the language in which the web service is

portrayed

o See http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes for ISO language codes

 Scale: expresses the scale of the portrayal as a ratio (X:Y); large-scale portrayals should

be abbreviated using SI symbols for million “M” and thousand “k”

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

42

o An example of a valid scale in the service title is “1:1M”

 Theme: a short or abbreviated description of the data contained in the layer

Service Name: For version 1.3.0 services, the service name should be ‘WMS’; for version 1.1.1, the

service name should be ‘OGC:WMS’

OneGeology Service Title Examples:

USA USGIN 1:3M Geology

USA-AZ AZGS ES 1:2k Faults

***Note: Language is omitted from the examples above, as they are in the default language

English.

C. 3 Layer Naming and Title Conventions
Each layer in a OneGeology-compliant web service should have a Layer Title and a Layer Name.

The Layer Name should be identical to the Layer Title, using underscores instead of spaces and an

abbreviated Scale token (see below)

Both Layer Titles and Layer Names should contain the following tokens (in order):

[Geographical Extent] [Data Owner Organization][Language Code][Scale][Theme], where

 Geographic extent: a rough approximation of the extent of the portrayal provided by the

web service

o Generally an ISO three letter country code (such as “USA”) and, if necessary, a

province, such as “USA-KY” for the state of Kentucky

o See http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3 for ISO three-letter country

codes

 Data owner organization code: an acronym or abbreviation for the entity that owns the

data portrayed by the web service

o The data owner organization can be, but is not necessarily, the name of the

organization responsible for deploying the data as a web service

 Language: a two-letter ISO 639-1 code for the language in which the web service is

portrayed

o See http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes for ISO language codes

 Scale: expresses the scale of the portrayal as a ratio (X:Y); large-scale portrayals should

be abbreviated using SI symbols for million “M” and thousand “k”

o An example of a valid scale in the service title is “1:1M”

o Layer Names should abbreviate the Scale token by removing the antecedent and

the colon. For example, a 1:23k scale would be abbreviated as 23k

 Theme: a short or abbreviated description of the data contained in the layer

Layer Title Examples

GBR BGS 1:625k Bedrock Age

USA USGIN 1:3M Geologic Age

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

43

Layer Name Examples

World_25M_Geol_Units

US-KY_KGS_24k_Faults

USA_USGIN_3M_Lithostratigraphy

A sample WMS GetCapabilities document demonstrating Layer Names and Layer Titles

C. 4 Additional Layer-level Metadata Requirements
Aside from Layer Title and Layer Name (discussed in Section 7.3), OneGeology standards require

additional layer-level metadata, including the following:

Abstract: A description of your layer data; should be as comprehensive and interoperable as

possible. You may wish to include other metadata in the abstract, such as information about your

organization and other data you make available. You may also wish to include a statement on

access constraints (source: http://www.onegeology.org/wmscookbook/2_6.html).

Keywords: Tags used to locate and categorize your layer. Required and conditional keywords are

described in Table 5 (source: http://www.onegeology.org/wmscookbook/2_6.html):

Table 5: OneGeology Keywords

Keyword Description Appearance in

GetCapabilities

Document

Example Cardinality

Continent continent@value continent@North America Required

Subcontinent subcontinent@value subcontinent@India Conditional

Geographic area (country) geographicarea@value geographicarea@USA Required

<Layer queryable="1" >

<Name>USA_USGIN_3M-Geologic_Age</Name>

<Title><![CDATA[USA USGIN 1:3M Geologic Age]]></Title>

<Abstract><![CDATA[This layer provides a portrayal in which units are categorized according to the

representative geologic age of the unit.]]></Abstract>

<KeywordList>

<Keyword>continent@North America</Keyword>

<Keyword>geographicarea@USA</Keyword>

<Keyword>dataprovider@USGIN</Keyword>

Code Example 3: OneGeology-compliant Layer Name and Layer Title in a WMS GetCapabilities

document

http://www.onegeology.org/wmscookbook/2_6.html
http://www.onegeology.org/wmscookbook/2_6.html

44

State (region or province) subarea@value subarea@Arizona Conditional

Data Provider dataprovider@value dataprovider@USGIN Required

Service Provider serviceprovider@value serviceprovider@AZGS Required

Bounding Box: A rough indicator of the extent of your data; can be computed from data in the

GeoServer ‘Edit Layer’ interface (Figure 17), or customized.

SRS: The spatial reference system used by your web service, indicated by an EPSG code.

Spatial reference systems specify a datum, a reference ellipsoid, and a coordinate system for

cartographic representations. Most known spatial reference systems are associated with an EPSG

code number; EPSG stands for European Petroleum Survey Group.

The default SRS is WGS 1984 (EPSG:4326). For the purposes of interoperability, your web service

must be deployed using EPSG:4326.

MetadataURL: A link to an external ISO-valid metadata document. A MetadataURL is required

for services deployed on OneGeology. To create an ISO Metadata record using ISO19115:2003, use

the USGIN Metadata Wizard.

Readable Legend Graphic: URL(s) for the legend graphic. Readable Legend Graphic URLs should

be present in the getCapabilities document by default when an SLD is assigned to a layer. For

more information on SLDs, see Section 5, Styling.

8 Glossary
Attribute (GIS)

Within the context of geographic information systems, an attribute describes a feature. For

example: attributes of a fault feature might include the latitude and longitude coordinates for each

fault, as well as the fault's age, dip, and slip.

Database

A method of storing data. In a database, data is divided up into database records; in turn, database

records are divided up into database fields. The advantage of a database is that it can be sorted

and searched by field contents.

Though modern databases are usually digital, a physical example of a database is a card catalog in

a public library. In a card catalog, data is divided up into individual cards, which are directly

analogous to database records. Each card (record) in the catalog corresponds with and describes a

book. The information about each book is divided up into fields: title; author; subject; publication

http://mw.usgin.org/

45

date; etc. Digital databases can be in tabular format (that is, a table) in which rows represent

individual records and columns constitute fields; or they can be viewed record-by-record.

Database Field

A subdivision of a database record in which a specific type of data is entered. Using the analogy of

a card catalog in a public library: if the card catalog is directly analogous to a database, and if

cards in the catalog are directly analogous to database records, then the different subdivisions of

information found in each card in the catalog (title, author, publishing date, etc.) are all database

fields.

Database fields are functionally similar to markup language elements.

Database Record

A subdivision of a database. Using the analogy of a card catalog in a public library, each record in

a database is analogous to an index card in the card catalog; each card (record) corresponds with

and describes an individual book. Database records are further subdivided into fields, which

contain specific kinds of data (title, author, etc).

Element
Elements are logical document components found in markup languages such as XML and HTML.

Elements simultaneously define the structure and content of a document; they are constituted by

two markup language tags and the content between the two. For example:

 <tag>content</tag>

The two tags and their content form an element. In a more concrete example, HTML uses the <i>

tag to demarcate text that should be Italicized. So, an Italicized element of an HTML document

would appear as follows:

 <i>Italicized content</i>

In a web browser, this element would produce the following result:

 Italicized content

For a more detailed overview of elements, see the USGIN XML Tutorial.

Markup language elements are functionally similar to database fields.

Feature

The word feature may indicate a geologic feature, such as a fault, formation, or dike. Alternatively,

a feature can be a GIS representation of a real-world resource. GIS features do not always

correspond with geologic features because GIS software can be used to represent anthropogenic

objects such as buildings, roads, or canals. The definition of the term feature therefore depends on

its context: it can be used to mean either a geologic feature or a GIS feature.

GIS features are often described by attributes.

http://usgin.org/content/xml-tutorial/

46

Interchange Format

An interchange format is an application-neutral format used to exchange data between systems.

For example, if one needed to transfer data between an Oracle database and an Access database,

an interchange format could be used to transfer this data from one database to the other.

Interoperability

The capability to communicate, execute programs, or transfer data in a manner that requires the

user to have little or no specialized knowledge. Interoperability is based on a shared data schema

and the use of standard vocabulary terms.

Markup Language

Markup languages, such as HTML and XML, use elements to annotate text in such a way that the

structure of the document is distinguishable from the contents of the document. Consequently,

markup language documents are very good for storing data, since the distinction between

structure and content is transparent and immediately discernible.

Metadata

Literally, data about data. Metadata is used to organize, categorize, browse, and discover data

resources. For more information, see the USGIN Metadata Tutorial.

Schema

A schema is the structural framework for a data model or collection of attributes that describe

something. For practical purposes, schemas structure documents by dictating where and how data

from a dataset should be entered into a document.

Uniform Resource Identifier (URI)

Uniquely identifies a resource. See the USGIN URI Tutorial for more information about URIs.

Web Service

Under the client-server relationship, a web service is a protocol for requesting data from a server;

data requests and responses made in accordance with this protocol are standardized. In other

words: by using standardized data requests and responses, client software can make requests for

data regardless of server configuration.

Matters are complicated slightly by the fact that “hosting data as a service” is considered

synonymous with “hosting data in accordance with a web service protocol.” Likewise, data hosted

in accordance with a web service protocol is often referred to as a web service.

The Open Geospatial Consortium has produced several different flavors of web service that are

relevant to geographic information systems, including:

Web Feature Services (WFS)

Web feature services provide information as collections of features, each having associated

georeferenced geometry and attributes. These can be thought of as a collection of database records,

each of which has a geometry field that locates the described feature, and a collection of properties

http://usgin.org/content/usgin-metadata-tutorial/
http://usgin.org/content/usgin-uri-tutorial

47

(the columns in the table) that describe the entity of interest at that location. For example a

feature service for rivers might provide features that have linear geometry representing river

segments, and properties like average flow rate, width, and depth for the segment. Feature

services are most useful for client applications that need to process information about individual

geographically located entities using properties of the entities. A client application that assists a

user to navigate by showing them a road map would use a map service, but a client application

that calculated the most efficient route between points in a city utilizing real-time traffic

information would require a representation of the streets as features.

Web Map Services (WMS)

Web map services provide a method to acquire a georeferenced map image for some geographic

bounding box. Clients send a ‘getMap’ request to a server specifying the geographic area of the

bounding box, and the map that is desired, and the server responds by returning an image file

(typical tif, jpg or png) for the requested area. Of course this assumes that the server actually

offers that map for the requested bounding box extent. A variety of other parameters allow control

over image size, map projection, and other details. The service may be based on a source shapefile

or feature class, or a georeferenced raster image. The service offers another request to

‘getFeatureInfo’ at a point location, which returns information according to the service provider’s

choices;the response is not standardized. Map services are most useful for client applications

designed for browsing maps and visually exploring geographic relationships between information

displayed in superimposed map layers.

XML

XML stands for Extensible Markup Language. XML documents are often used as interchange

formats for database records, owing to the ability for XML elements to emulate database fields. To

use XML documents as an interchange format, USGIN defines XML schemas in which each XML

document corresponds with a specific database record and each element corresponds with data

entered in a database field. In these documents, tags define the database fields.

For example: well_name is a field within the WellHeader content model. Any known oil and gas

well names go in the well_name field. An XML schema for expressing database records within the

WellHeader content model might appear as follows:

 <content_model_name>WellHeader</content_model_name>

 <database_record>

 <well_name>Union Oil Company of California-South 7 Veysey</well_name>

In this example, the Union Oil Company of California-South 7 Veysey well name constitutes the

content delineated by the <well_name> tag.

For a more detailed overview of XML, see the USGIN XML Tutorial.

http://usgin.org/content/xml-tutorial/

