
CALIFORNIA OIL & GAS FIELDS Volume III – Northern California (CD-1)

Contour maps, cross sections, and data sheets for California's oil and gas fields

Data for these fields are published in the following volumes

(and may be purchased in CD format):

Volume I, 1998, 499 pages (Central California)

Volume II, 1992, 645 pages (Southern, Central, and Offshore California)

Volume III, 1982, 330 pages (Northern California)

© California Department of Conservation Division of Oil, Gas, and Geothermal Resources

All rights reserved

A USERS GUIDE

Geological and statistical data are available in this document for most oil and gas fields in California. For each field, a contour map and a cross section page will appear, followed by a page of statistical data. Most fields have two pages of information, but larger fields have more. The information is current to the date at the foot of each page.

Oil and gas field information can be accessed with the alphabetized list of oil and gas fields (next page). Oil and gas fields are accessible by clicking on the name of the appropriate field.

VOLUME III – NORTHERN CALIFORNIA OIL AND GAS FIELDS

Afton Gas
Afton, South, Gas
Angel Slough Gas
Arbuckle Gas
Artois Gas

Black Butte Dam Gas Bounde Creek Gas

Brentwood

Brentwood, East, Gas

Buckeye Gas
Bunker Gas
Butte Sink Gas
Butte Slough Gas
Cache Creek Gas
Cache Slough Gas

Catlett Gas
Chico Gas
Clarksburg Gas

Collegeville, East, Gas Compton Landing Gas Compton Landing, South,

Gas

Concord Gas

Conway Ranch Gas

Corning Gas

Corning, South, Gas Crossroads Gas

Davis, Southeast, Gas

Denverton Gas

Denverton Creek Gas

Dixon Gas
Dixon Gas, East
Dry Slough Gas
Dufour Gas

Dunnigan Hills Gas

Durham Gas

Dutch Slough Gas Fairfield Knolls Gas

Florin Gas Freeport Gas

Fremont Landing Gas French Camp Gas

Galt Gas

Grand Island Gas

Grays Bend Gas (now part of Knights Landing Gas, for which no data sheet is

available)

Greens Lake Gas Greenwood Gas

Greenwood, South, Gas

Grimes Gas

Grimes, West, Gas Half Moon Bay Harte Gas Honker Gas

Hospital Nose Gas Karnak Gas

Kirby Hill Gas

Kirby Hill, North, Gas

Kirk Gas
Kirkwood Gas
Knightsen Gas
La Honda Gas
Larkin, West, Gas
Lathrop Gas

Lathrop, Southeast, Gas

Liberty Cut Gas Liberty Island Gas Lindsey Slough Gas

Livermore Llano Seco Gas Lodi Airport Gas

Lodi Gas

Lone Tree Creek Gas
Los Medanos Gas
Maine Prairie Gas
Malton-Black Butte Gas
McDonald Island Gas
McMullin Ranch Gas

Merritt Gas Merritt Island Gas

Millar Gas

Moody Gulch Oil

Moon Bend Gas Mulligan Hill Gas

Nicolaus Gas Oakley Gas Oakley, South, Gas

Oil Creek Oil Ord Bend Gas Orland Gas

Peace Valley Gas Perkins Lake Gas

Petaluma Petrolia Pinole Point Plainfield Gas

Plainfield Gas
Pleasant Creek Gas
Poppy Ridge Gas
Potrero Hills Gas
Princeton Gas
Putah Sink Gas
Rancho Capay Gas
Red Bank Creek Gas
Rice Creek Gas

Rice Creek, East, Gas

Rio Jesus Gas Rio Vista Gas River Break Gas River Island Gas Robbins Gas Roberts Island Gas

Sacramento Airport Gas Sacramento By-Pass Gas

Sargent Oil Field Saxon Gas

Ryer Island Gas

Schohr Ranch Gas

Sherman Island Gas Stegeman Gas Stone Lake Gas Sugarfield Gas Suisun Bay Gas Sutter Buttes Gas Sutter City Gas Sycamore Gas

Sycamore Slough Gas

Table Bluff Gas
Thornton Gas

Thornton, West-Walnut

Grove Gas

VOLUME III - NORTHERN CALIFORNIA OIL AND GAS FIELDS

Tisdale Gas

Todhunters Lake Gas

Tompkins Hill Gas

Tracy Gas

Tremont Gas

Union Island Gas

Van Sickle Island Gas

Vernalis Gas

Vernalis, Southwest, Gas

Verona Gas

West Butte Gas

Wild Goose Gas

Williams Gas

Willow Pass Gas

Willows-Beehive Bend

Gas

Willow Slough Gas

Winchester Lake Gas

Winters Gas

Woodland Gas

Zamora Gas

CALIFORNIA OIL & GAS FIELDS

NORTHERN CALIFORNIA

Published by

THE CALIFORNIA DIVISION OF OIL AND GAS

Sacramento

Fourth Edition 1982 Third Edition 1981 Supplement 1978 Second Edition 1973 First Edition 1960

INTRODUCTION

This publication is a revised edition of the *Northern California* section of *California Oil and Gas Fields, Volume I,* printed in 1973 (see map on page v). Geologic and statistical data for all oil and gas fields in Northern California (current to 1982) are included, as well as regional cross sections and index maps.

All fields are arranged alphabetically; however, field names preceded by compass directions, such as South Afton, will be found listed as Afton, South, etc.

MAP SHEETS

Definitions

Typical log - An electric log that best typifies the electric log characteristics of wells in a particular oil or gas field.

Composite log - An electric log made by combining sections of electric logs from two or more wells to depict the general log characteristics of a particular oil or gas field.

NOTE: Some typical or composite logs are from wells outside the administrative field boundaries; therefore, the total log depth may be greater than the deepest well in the field. In addition, some long log sections not critical for correlation purposes have been removed. The sawtooth symbol (\(\sigma\)) is used to indicate that a section of a log has been removed.

Productive Area

The productive area of a field or area can be determined from (1) the well symbols, or (2) shading on the contour map. (Shading is also used on the cross sections to indicate productive zones and the approximate limits of production.) The productive area is the *maximum* productive area as of data sheet date. Productive areas shown on the index maps are generalized.

Contour Map Depth Datum

The depth datum used for the contour maps is sea level.

Map Scale

Generally, map scales can be inferred from the public land survey data on the contour maps. When this is not possible, a map scale is shown. Cross sections that are depicted schematically are not necessarily drawn to scale.

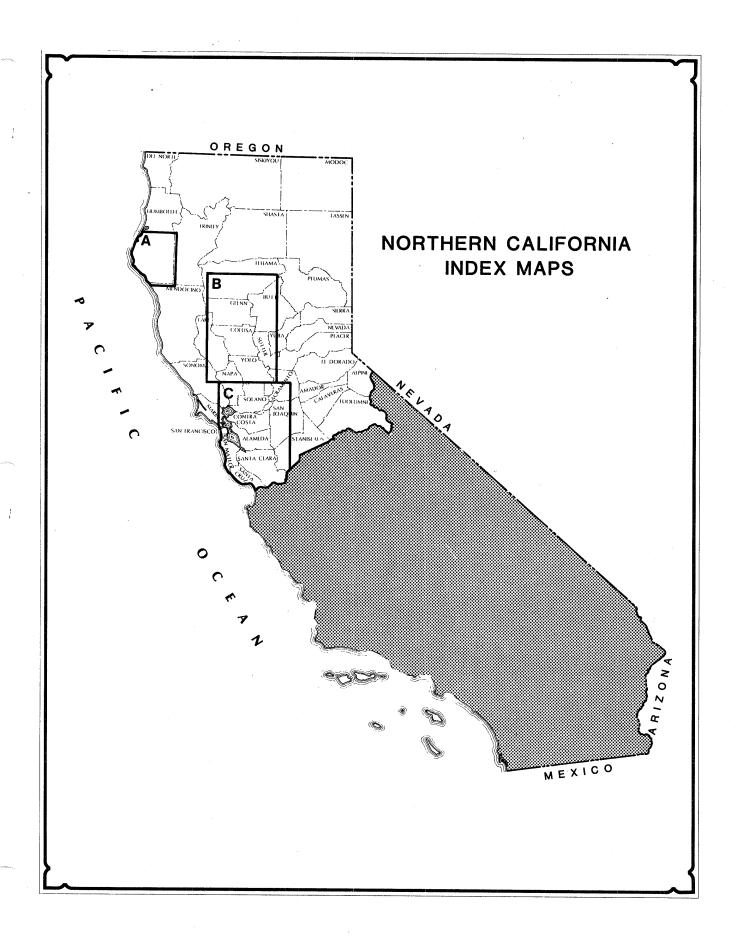
DATA SHEETS

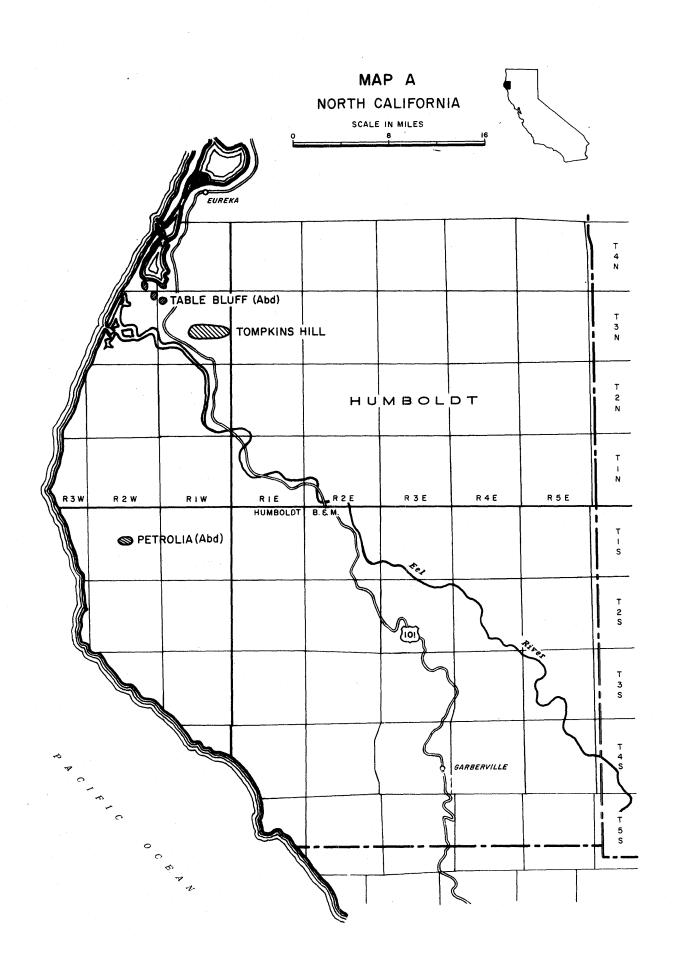
Discovery well and deepest well data - The discovery well listed is the discovery well for the field or area. The total depth for the deepest well is the drilled depth. If the well is directional, the true vertical depth is given under the remarks section.

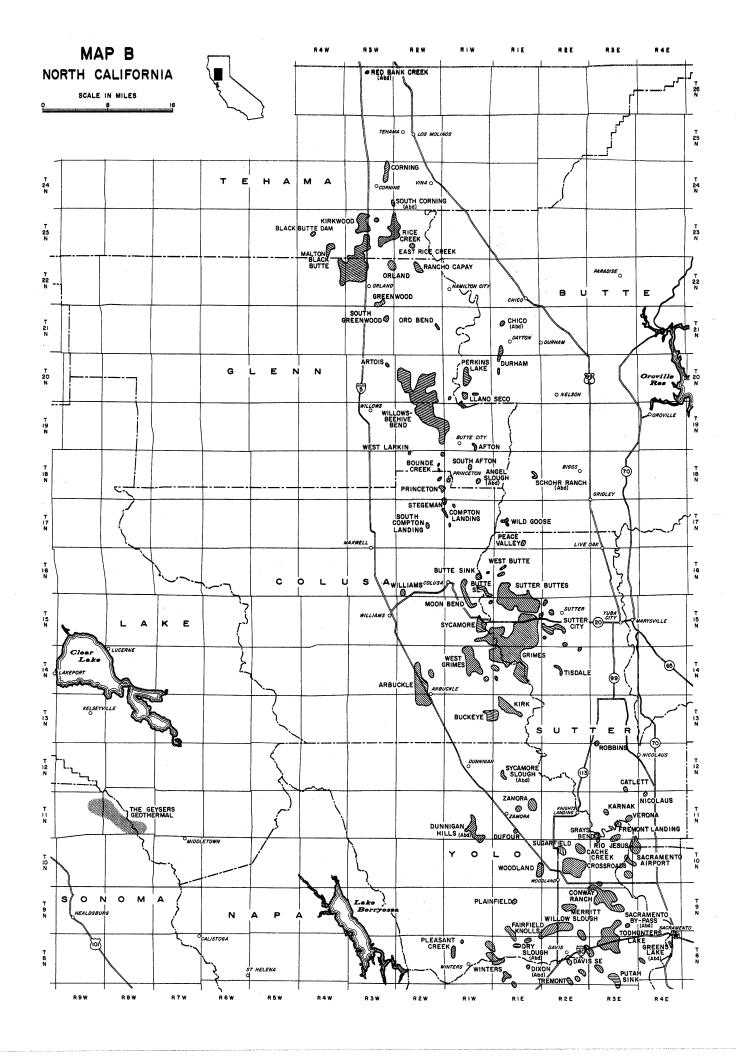
Pool or zone data - Pools are listed in stratigraphic sequence, from left to right. Properties that are not available on a pool basis are listed under the field or area column.

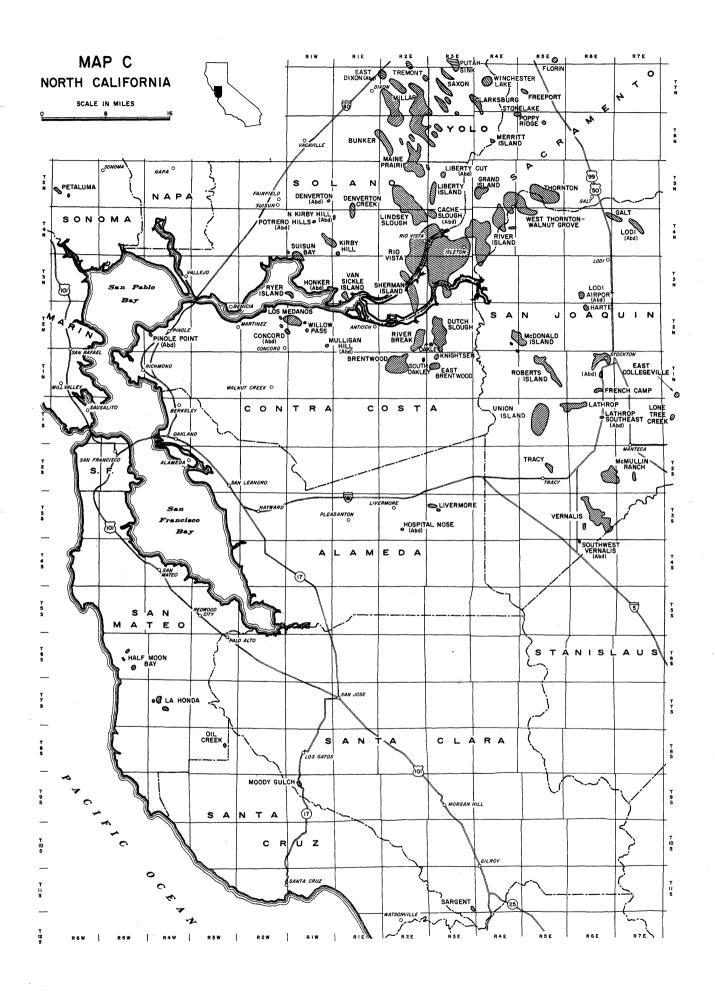
Reservoir Rock and Fluid Properties - Values calculated from logs are footnoted as such. Values without footnotes are derived from core or sidewall sample data. Ranges are given where applicable. Dashes are used where data are not available to the Division of Oil and Gas.

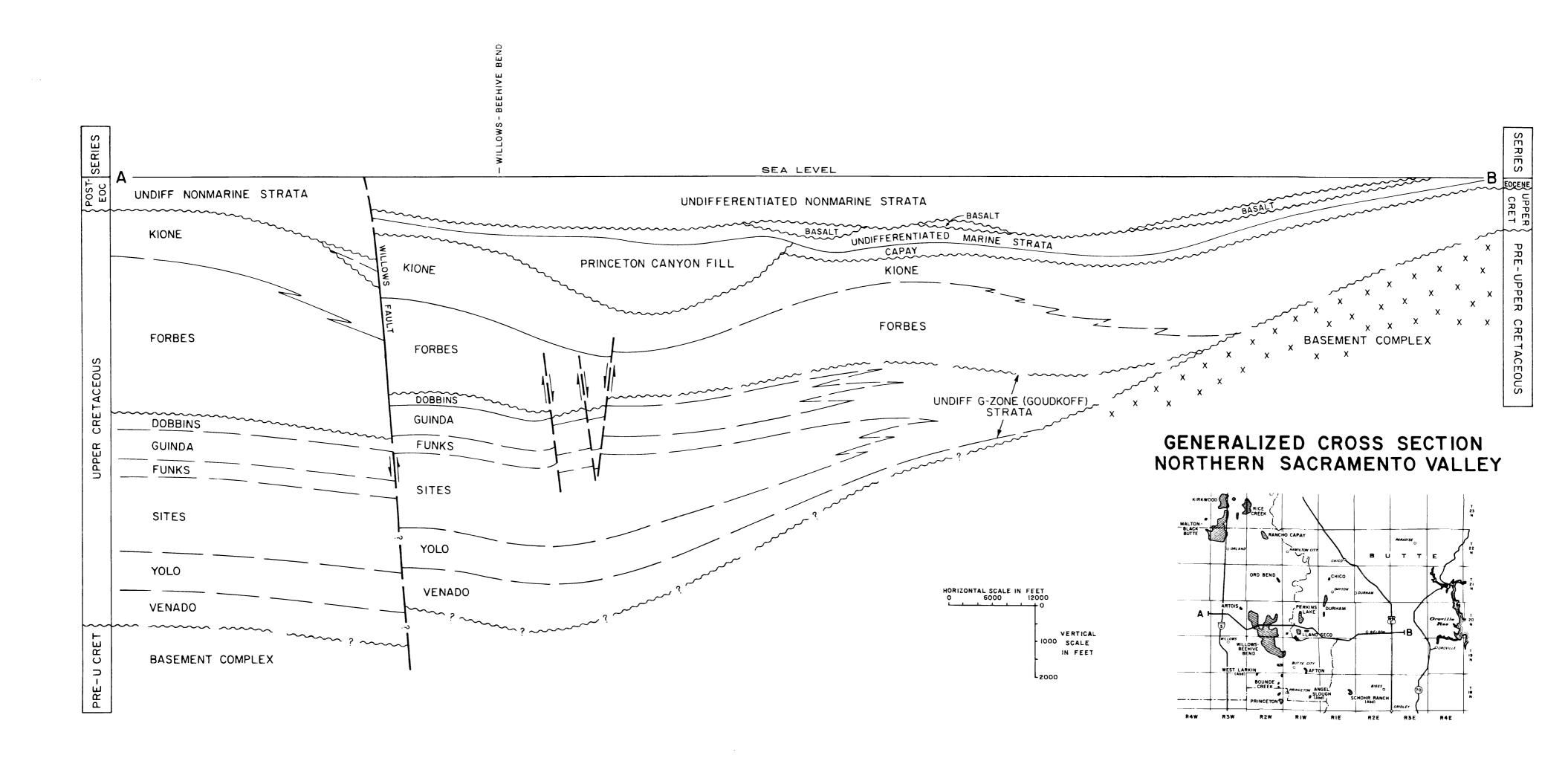
FOOTNOTES: *

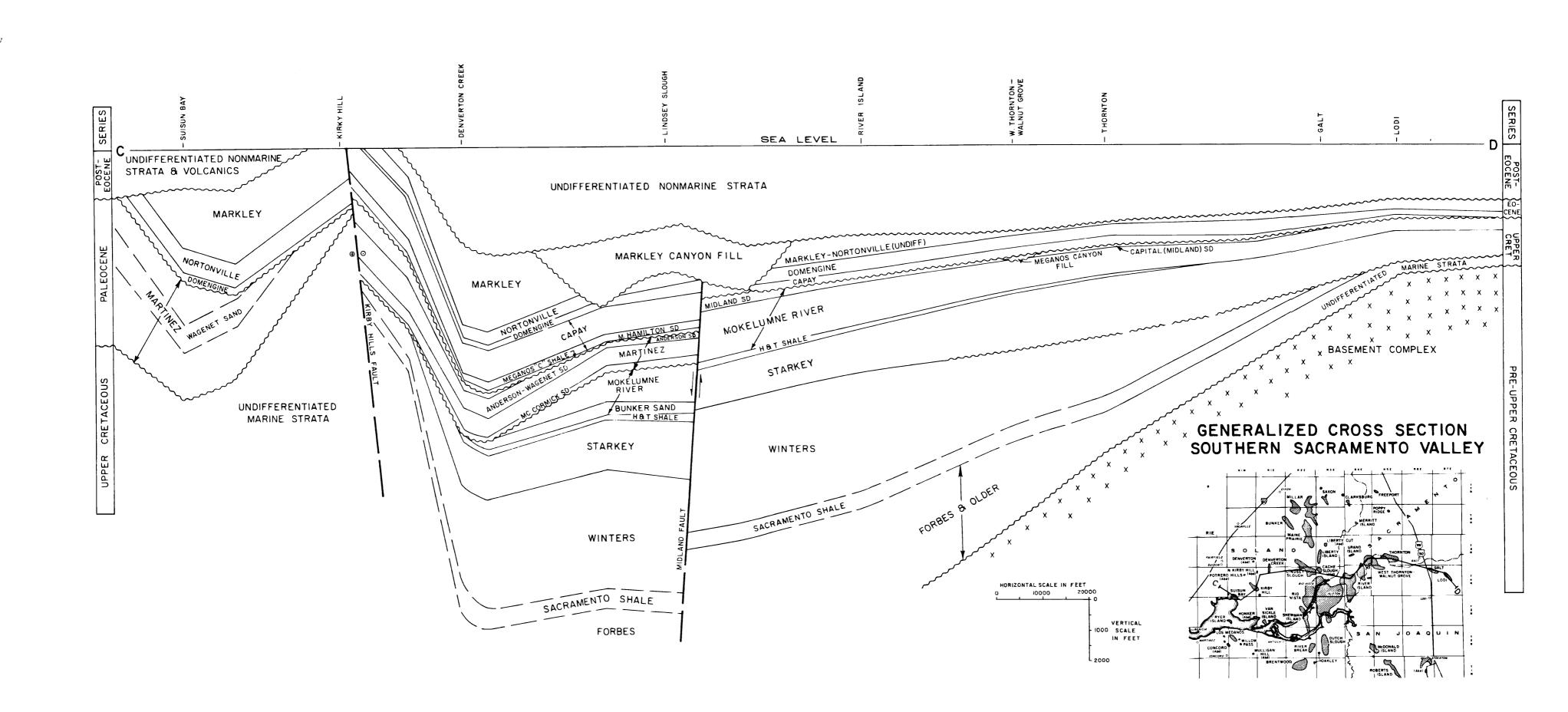

- * Average value.
- ** Estimated value (based on best available data).
- ***Representative values for area, formation, and depth.
- † Log derived value from geophysical logs such as electric, neutron-density, or sonic.
- †† Calculated value.

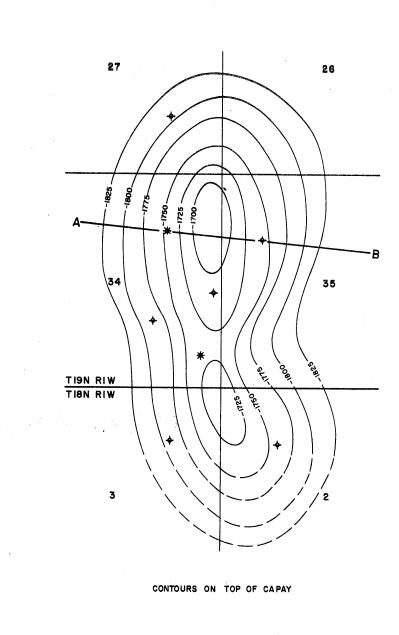

MAP SHEET AND CROSS SECTION LEGEND

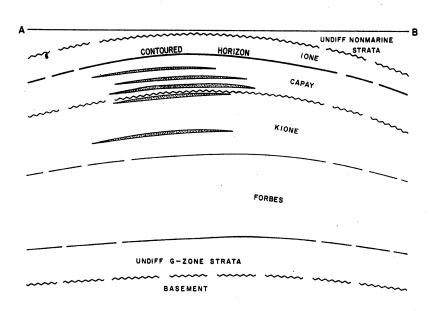

•	Location		Fault
\$	Drilling – idle		Possible fault
-	Abandoned - dry hole		1 Ossible fault
. •	Completed – oil		Fault dip direction
•	Idle oil		Taux aip airection
•	Abandoned – oil		Fault movement (+=up, -= down)
*	Completed – gas	sycaputotota	
*	Idle – gas		Fault movement
쓪	Abandoned – gas		
ø	Water disposal	<u> </u>	Fault movement (@=toward observer,
ø	Oil well converted to water disposal	\oplus	⊕=away from observer)
- ×	Intersection of borehole and contoured horizon	~~~~	Unconformity
	Productive area	~~~	Section removed from an electric log
	Contour line (good control)		
	Contour line (poor control)		Oil zones in cross sections
-	Axis of anticline	75777777777	
	Axis of syncline	<u> </u>	Gas zones in cross sections

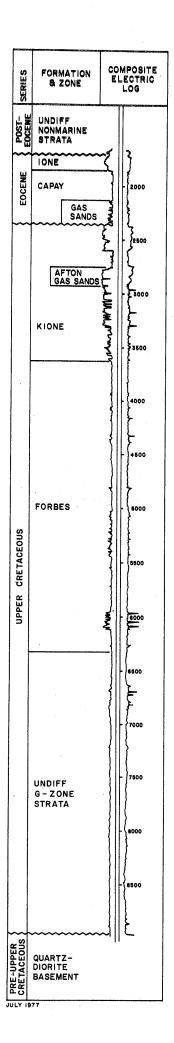

ABBREVIATIONS


B&M	Base and Meridian	Holo.	Holocene
MD	Mount Diablo	Pleis.	Pleistocene
SB	San Bernardino	Plio.	Pliocene
H	Humboldt	Mio.	Miocene
psig	pounds per square inch (gauge)	Olig.	Oligocene
bbl	barrel (42 U.S. gallons)	Eo.	Eocene
Mcf	1000 cubic feet	Paleoc.	Paleocene
btu	British thermal unit	Cret.	Cretaceous
gr/gal	grains per gallon	Jur.	Jurassic
cem.	cemented	Éore	early
N.A.	not available	M or m	middle
	not applicable	Lorl	late
abd.	abandoned	undiff.	undifferentiated





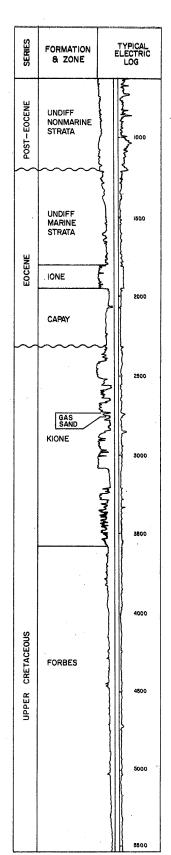


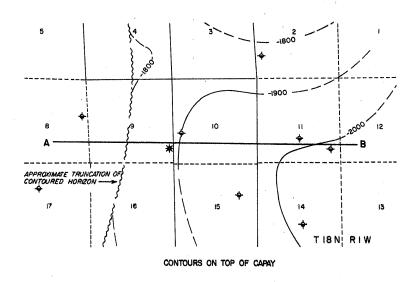


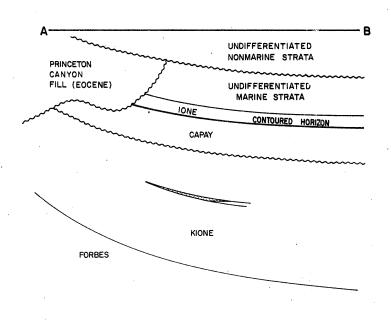
MAPS AND DATA SHEETS

AFTON GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Buttes Resources Co. "Afton Community 1"	Richfield Oil Corp. "Afton Community 1" 1	34 19N 1W	MD	5,247	Afton	
Deepest well	ARCO Oil and Gas Co. "Roco-Afton Community" 66-34	Atlantic Richfield Co. "ROCO-Afton Community" 66-34	34 19N 1W	MD	8,992	<u> </u>	basement pre-Lt.Cretaceous


POOL DATA


_			POOL DATA						
ITEM	CAPAY	AFTON				FIELD OR AREA DATA			
Discovery date	November 1949	February 1944							
Initial production rates		-		-					
Oil (bbl/day)					*				
Gas (Mcf/day)	485	5,700 550							
Flow pressure (psi)	640 11/64	5/8							
Bean size (in.)	11/64	3/8							
Initial reservoir pressure (psi)	800	1,225							
Reservoir temperature (*F)	105	116		,					
Initial oil content (STB/acft.)									
Initial gas content (MSCF/ac-ft.)	380	750							
Formation	Capay Eocene	Kione Late Cretaceous							
Geologic age	1,830	2,650							
Average depth (ft.)	30	25							
Average net thickness (ft.)	-		l						
area (acres)			·			160			
area (acres)									
	RESERVOIR ROCK PROPERTIES								
Porosity (%)	25*	30*				-			
Soj (%)									
Swi (%)	35* 65*	30* 70*	J						
Sgi (%)	760	70"							
Permeability to air (md)									
		RESERVOIR FLUID PROPERTIES							
Oil:	,			,					
Oil gravity (*API)									
Sulfur content (% by wt.)									
Initial solution									
GOR (SCF/STB)					'				
Initial oil FVF (RR/STR)				,					
Bubble point press. (psia)									
Viscosity (cp) @ *F				7 49					
Gas:			·	·					
Specific gravity (air = 1.0)	.656††	.656††							
Heating value (Btu/cu. ft.)	770	770							
				·	•				
Water:	26,400	26,400							
Salinity, NaCl (ppm)	20,400	20,400				*			
T.D.S. (ppm)			}						
R _W (ohm/m) (\$7°F)					· ·				
		ENH	IANCED RECOVERY PROJ	ECTS					
Fab				-					
Enhanced recovery projects Date started	4.								
Date discontinued				·					
and on the manual									
* *									
1			į ·						
1			l .						
1									
		_							
4 4		-							
		·							
Peak oil production (bhl)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Peak oil producțion (bbl) Year						821 134			
Peak oil production (bbl) Year						821,134 1949			

Base of fresh water (ft.): 1,300

Remarks

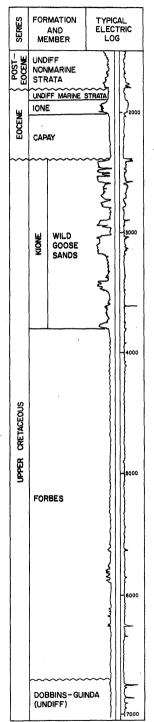
JANUARY 1978

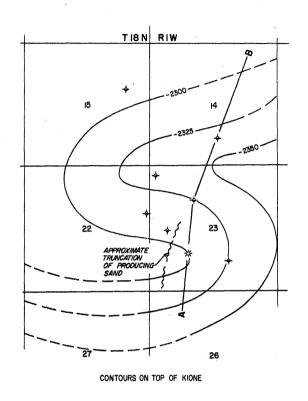
COUNTY: GLENN

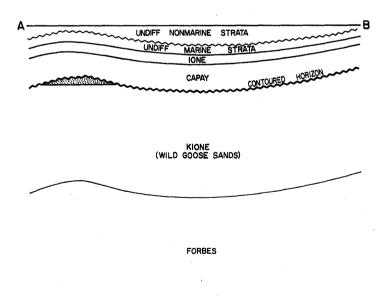
AFTON, SOUTH, GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. &	R. 6	3.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Cecil" 1-9	Same as present	9 18N	1W	MD	3,740	Kione	Forbes Late Cretaceous
Deepest well	Same as above	11	"		"	"	"	"


			POOL DATA				
ITEM	KIONE					FIELD OR AREA DATA	
Discovery date	November 1975						
Oil (bbl/day)							
Gas (Mcf/day)	9,600	1					
Flow pressure (psi) Bean size (in.)	1,131		1	ľ			
Initial reservoir	1 200			į			
pressure (psi) Reservoir temperature (°F)	1,200 110	1				,	
Initial oil content (STB/acft.)							
Initial gas content (MSCF/acft.).	740 Kione						
Formation	Late Cretaceous						
Geologic age	2,735						
Average net thickness (ft.)	15						
area (acres)	40						
,		<u> </u>	<u> </u>			<u> </u>	
	RESERVOIR ROCK PROPERTIES						
Porosity (%)	. 30*	1		1			
Soi (%)							
Swi (%)	30* 70*					1	
Permeability to air (md)	,,						
. 1		<u> </u>	<u> </u>		L		
' '		RI	ESERVOIR FLUID PROPERT	TIES		F	
Oil:		İ					
Oil gravity (°API)							
Sulfur content (% by wt.) Initial solution							
GOR (SCF/STB)					1	·	
Initial oil FVF (RB/STB)							
Bubble point press. (psia) Viscosity (cp) @ *F							
1							
Gas:	.652 ^{††}		1			ě.	
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	778						
]							
Water: Salinity, NaCl (ppm)						•	
T.D.S. (ppm)			1	•			
R _W (ohm/m) (77°F)							
		ENF	IANCED RECOVERY PROJ	ECTS			
				I .			
Enhanced recovery projects Date started							
Date discontinued			1				
		1					
]]				
'							
		,					
		:					
Peak oil production (bbl)							
Year			1	[
Peak gas production, net (Mct)	48,846 1979						
Year	15/9						


Base of fresh water (ft.): 1,300


Remarks: Commercial gas deliveries began in 1979.

ANGEL SLOUGH GAS FIELD

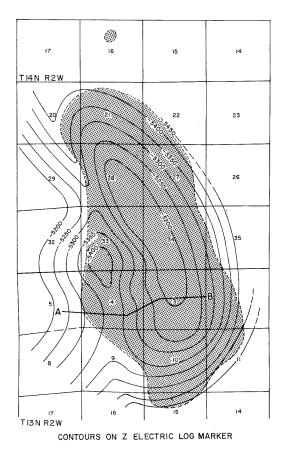
(Abandoned)

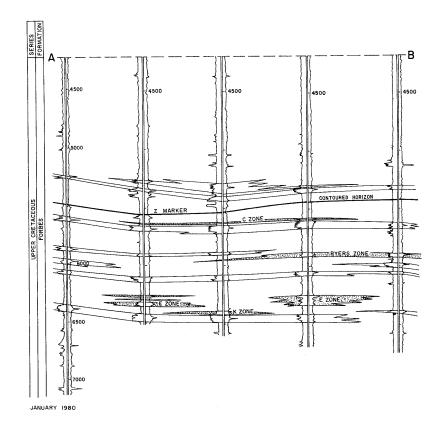
MAY 1978

COUNTY: GLENN

ANGEL SLOUGH GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


		Present operator and well designation		Sec. T. & R.	B.&M.	(ieet)	Pool (zone)	Strata & age at total depth
	Discovery well	Exxon Corp. "Angel Slough Operating Unit"	Humble Oil & Refining Co. "John R. Hulen et ux" 1	23 18N 1W	MD	7,019	Wild Goose	Guinda Late Cretaceous
l	Deepest well	Same as above		"	"	"	11	11


			POOL DATA			•				
ITEM	WILD GOOSE					FIELD OR AREA DATA				
Discovery date	June 1960									
Oil (bbl/day)	2,350									
Gas (Mcf/day) Flow pressure (psi)	800									
Bean size (in.)	22/64									
Initial reservoir pressure (psi)										
Reservoir temperature (°F)	109	'								
Initial oil content (STB/acft.)	709									
Initial gas content (MSCF/acft.). Formation	Kione									
Geologic age	Late Cretaceous									
Average depth (ft.)	2,383 15				,					
Maximum productive										
area (acres)	160									
		RE	SERVOIR ROCK PROPERT	ries						
	30*	1.								
Porosity (%) Soj (%)										
Swi (%)	25* 75*									
Sgi (%) Permeability to air (md)					,					
remeability to all (ilid)										
	RESERVOIR FLUID PROPERTIES									
Oil: Oil gravity (°API)										
Sulfur content (% by wt.) Initial solution										
GOR (SCF/STB)										
Initial oil FVF (RB/STB) Bubble point press. (psia)										
Viscosity (cp) @ °F										
Gas:										
Specific gravity (air = 1.0)	-									
Heating value (Btu/cu. ft.)	784									
Water:										
Salinity, NaCl (ppm)										
T.D.S. (ppm) R _W (ohm/m) (77°F)										
(01111) (1) (1)		<u> </u>	L	1						
		ENF	IANCED RECOVERY PRO	JECTS		Г				
Enhanced recovery projects										
Date started										
Date discontinued					*					
•										
*										
Peak oil production (bbl) Year										
Peak gas production, net (Mcf)	133,998									
Year	1964									

Base of fresh water (ft.): 1,050

Remarks: Commercial gas deliveries began in March 1962. The field was abandoned in July 1965. One well was completed and cumulative gas production was 399,600 Mcf.

ARBUCKLE GAS FIELD

COUNTY: COLUSA

ITEM

FORBES

.565

ARBUCKLE GAS FIELD

FIELD OR AREA DATA

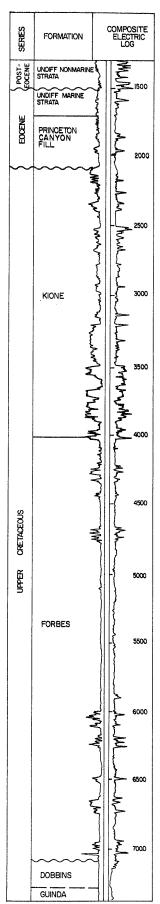
DISCOVERY WELL AND DEEPEST WELL

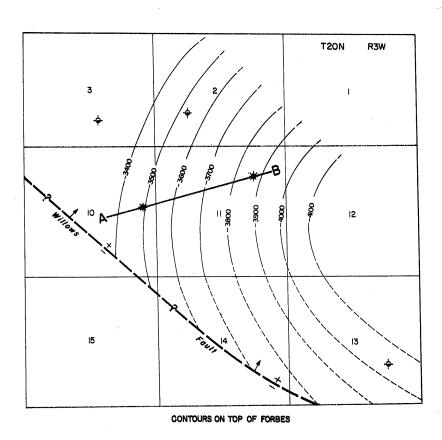
		Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
	Discovery well	Gulf Oil Corp. "Arbuckle Unit C" 1	Western Gulf Oil Co. "Arbuckle Unit C" 1	3 13N 2W	MD	6,150	Forbes	
I	Deepest well	Occidental Petroleum Corp. "Arbuckle Section 4 Unit" 1	Same as present	4 13N 2W	MD	12,007		Venado Late Cretaceous

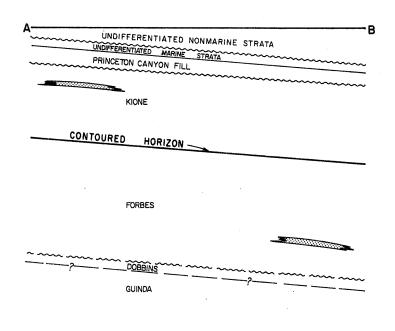
POOL DATA

Discovery date	7,780 1,245 1/2 2,200-4,800 100-133 800-1,400					
Formation	Forbes					
Geologic age	Late Cretaceous			Ì		
Average depth (ft.)	4,430-7,150					
Average net thickness (ft.)	5-90		*			
Maximum productive	3-90				·	
	5,495					
area (acres)	3,493					
		RE	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	23†					
Soi (%)	55†					
Swi (%)	45†	·				
Sgi (%)	451					
Permeability to air (md)	1			1		
		RE	SERVOIR FLUID PROPERT	TIES		
Oil:						

as: Specific gravity (air = 1.0)...... Heating value (Btu/cu. ft.)...... 980-1,010 Water: Salinity, NaCl (ppm) ... T.D.S. (ppm) R_W (ohm/m) (77°F) 18,380 18,760 .41 **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects... Date started..... Date discontinued


Peak oil production (bbl)
Year
Peak gas production, net (Mcf)
Year 8,622,237 1961


Base of fresh water (ft.): 1,250


Remarks: Commercial gas deliveries began in March 1958. Most of the gas sand stringers have been given local names by operators.

Selected References: Huey, W. F., 1957, Arbuckle Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 43, No. 2.

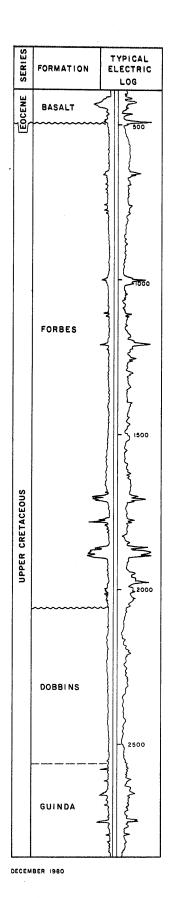
ARTOIS GAS FIELD

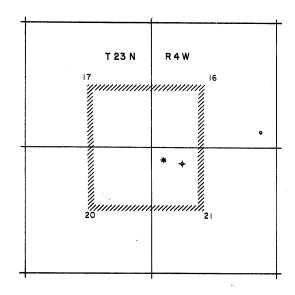
AUGUST 1978

ARTOIS GAS FIELD

COUNTY: GLENN

DISCOVERY WELL AND DEEPEST WELL


		Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
$\ \ $	Discovery well	McCulloch Oil Corp. "Sunray-McCulloch- Expl. Von Bargen" 1	Sunray Mid-Continent Oil Co. "Sunray- McCulloch-Coast Expl. Von Bargen" 1	11 20N 3W	MD	7,447	Forbes	Guinda Late Cretaceous
	Deepest well	Same as above	11	"	"	. "	"	"


POOL DATA								
ITEM	UNNAMED	UNNAMED				FIELD OR Area data		
Discovery dateInitial production rates Oil (bbl/day)	May 1977	November 1959						
Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	2,800	1,275 1,500 3/8						
Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	1,050 110	3,870 113 1,770						
Initial gas content (MSCF/acft.). Formation Geologic age	580 Kione Late Cretaceous 2,520	Forbes Late Cretaceous 5,885						
Average net thickness (ft.) Maximum productive area (acres)	20	20 80						
		R	ESERVOIR ROCK PROPERT	TIES				
Porosity (%)	28* 35* 65*	25* 40* 60*						
Permeability to air (md)								
•		. R	ESERVOIR FLUID PROPERT	TIES				
Oil: Oil gravity (*API)		1		·				
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.560 1,005	.564 1,000				·		
Water: Salinity, NaCl (ppm) T.D.S. (ppm)		17,120						
		EN	HANCED RECOVERY PRO	ECTS .		<u> </u>		
Enhanced recovery projects Date started Date discontinued								
		,						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						30,494 1970		

Base of fresh water (ft.): 2,100

Remarks: Commercial gas deliveries began in December 1966.

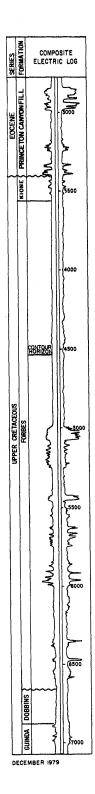
BLACK BUTTE DAM GAS FIELD

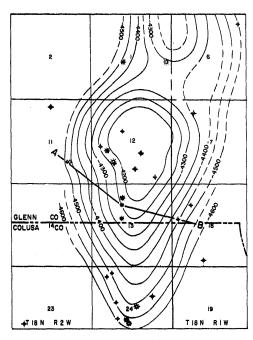
SUBSURFACE DATA NOT AVAILABLE

COUNTY: TEHAMA

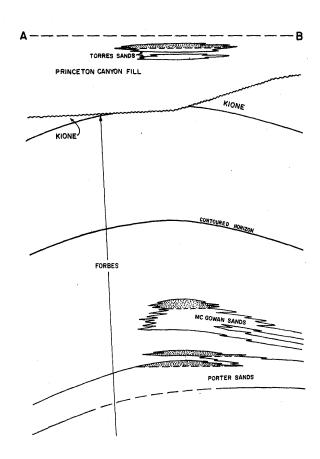
BLACK BUTTE DAM GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


		Present operator and well designation	Original operator and well designation	Sec. T. & R.		(leet)	Pool (zone)	Strata & age at total depth
ı	Discovery well	Delaware Northwest Exploration Co. "Hall" l	Same as present	21 23N 4V	MD	2,060	Forbes	
	Deepest well		Humble Oil & Refining Co. "Arthur M. Hall" 1	21 23N 4V	MD	2,866		Guinda Late Cretaceous


			POOL DATA		
ITEM	FORBES				FIELD OR AREA DATA
Discovery date	October 1979 207 230 3/16 350 88-92				
Reservoir temperature (*f)	88-92 90-140 Porbes Late Cretaceous 650-950 10-20				
		RE	SERVOIR ROCK PROPERT	ries	· · · · · · · · · · · · · · · · · · ·
Porosity (%)	18-23 [†] 40-50 [†] 50-60 [†]				
		RE	SERVOIR FLUID PROPER	TIES	
Oil: Oil gravity (*API)	·				
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	.560* 1,000*				
,		ENF	IANCED RECOVERY PRO	JECTS	
Enhanced recovery projects Date started Date discontinued					
		,			
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					

Base of fresh water (ft.): 300-400


Remarks: Commercial gas deliveries have not yet begun.

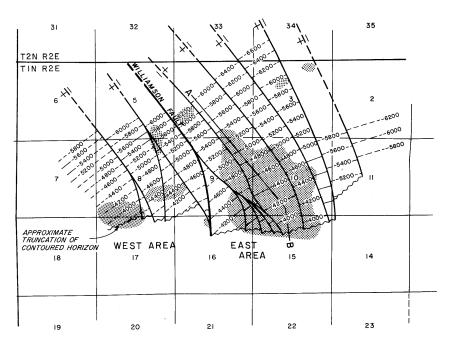
BOUNDE CREEK GAS FIELD

CONTOURS ON ELECTRIC LOG MARKER IN FORBES FORMATION

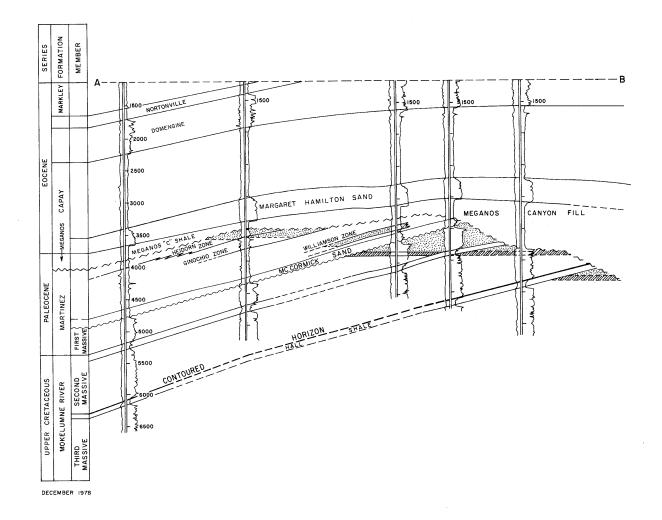
COUNTY: COLUSA and GLENN

DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
١	Discovery well	Exxon Corp. "Bounde Creek Opr. Unit 1" 1	Humble Oil & Refining Co. "Mamie H. Porter et al" 2	13 18N 2W	MD	7,529	Forbes	Guinda Late Cretaceous
	Deepest well	Same as above	" .	**,	"	"	"	"


		POOL DATA		· · · · · · · · · · · · · · · · · · ·	FIELD OR
PRINCETON CANYON FILL	KIONE	FORBES	GUINDA		AREA DATA
. October 1958	May 1977	September 1956	September 1959		
3,100 1,080 26/64	2,500 1,500 1/4	3,980 2,125 19/64	1,848 2,100 3/16		
1,300	2,130 100	3,810-4,905 110-133	· 5,450 135		
980 Princeton Cyn. fill Eocene 2,840	1,000-1,300 Kione Late Cretaceous 3,700 45	780-1,500 Forbes Late Cretaceous 5,450 265	830-1,400 Guinda Late Cretaceous 6,965 35		
					490
	R	ESERVOIR ROCK PROPE	RTIES		
31*	24-28†	15-24†	15-20***		
25*	35-40 † 60-65 †	45-60 † 40-55 †	50-60*** 40-50***		
·	R	ESERVOIR FLUID PROPE	RTIES		
		e e			
562	.568 985	.564 990			
-	-	9,400			
	L EN	HANCED RECOVERY PRO	OJECTS		1
		·			2,654,168 1959
	FILL October 1958 3,100 1,080 26/64 1,300 90 980 Princeton Cyn. fill Eocene 2,840 30 31* 25* 75*	FILL October 1958 May 1977 3,100 1,080 1,500 1,44 1,300 980 Princeton Cyn. fill Eocene 2,840 30 RI 31* 24-28† 25* 35-40† 60-65† RI	PRINCETON CANYON RIONE FORBES	PRINCETON CANYON FILL October 1958	PRINCETON CANYON KIONE PORBES GUINDA

Base of fresh water (ft.): 1,800


Remarks: Commercial gas deliveries began in January 1958. Increased pressure gradients are encountered when drilling below 5,000 feet, requiring mud weight as high as 135 pounds per cubic foot.

Selected References: Bruce, Donald D., 1959, Bounde Creek Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 45, No. 1.

BRENTWOOD OIL FIELD

CONTOURS ON BASE OF SECOND MASSIVE SAND

BRENTWOOD OIL FIELD Cont.....

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	T. 8	k R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Heidorn" 4-4	Same as present	4	1N	2 E	MD	5,202	Heidorn	
Deepest well	Shell Oil Co. "Heidorn" 2-4	Same as present	4	1N	2E	MD	11,472		E-zone Late Cretaceous

POOL DATA

*			POOL DATA		
ITEM	HEIDORN				FIELD OR AREA DATA
Discovery date	July 1962 1,160 196 1/2 1,600 122 520-690 Martinez Paleocene 3,520 34				1,330
		P.F	SERVOIR ROCK PROPERT	l TIFS	
Porosity (%)	20-24 45-50 50-55				
		RE	SERVOIR FLUID PROPERT	<u> </u>	
Oil: Oil gravity ('API)	.678 1,175				
Water: Salinity, NaCl (ppm)	8,900			·	 ·
		ENH	IANCED RECOVERY PROJ	ECTS	
Enhanced recovery projects Date started Date discontinued			·		
					- 1
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					1,094,843 1964 5,025,301 1964

Base of fresh water (ft.): The water obtained from the productive zones is relatively fresh.

Remarks

Selected References: Sullivan, John C., 1963, Brentwood Oil Field: California Division of Oil and Gas, Summary of Operations -- California Oil Fields, Vol. 49, No. 2.

BRENTWOOD OIL FIELD ANY AREA, GAS ZONE 2/

DISCO	VFRY	WELL	AND	DEEPEST	WELL
	V E.N. I	VVLL			***

	Present operator and well designation	Original operator and well designation	Sec.	T. 8	k R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Heidorn" 4-4	Same as present	4	1N	2E	MD	5,202	Heidorn	
Deepest well	Shell Oil Co. "Heidorn" 2-4	Same as present	4	1N	2E	MO	11,472		E-zone Late Cretaceous

-	_	^	D	•	-	•
	4 1			Δ	н.	•

			POOL DATA			
ITEM	HEIDORN	GINOCHIO	WILLIAMSON			FIELD OR AREA DATA
Discovery date	July 1962	August 1962	July 1962			
Oil (bbl/day)Gas (Mcf/day)	1,160	3,900	540			
Flow pressure (psi)	196	1,175	475	•		
Bean size (in.)	1/2	24/64	13/64			
Initial reservoir pressure (psi)	1,600	1,650	1,650			
Reservoir temperature (°F)	122	122	132			
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.)	520, 600	540-710	690			
Formation	520-690 Martinez	Martinez	Martinez			
Geologic age	Paleocene	Paleocene	Paleocene			
Average depth (ft.)	3,520 34	3,530 43	3,570 20			
Maximum productive area (acres)	34	43	20			420
·		RE	SERVOIR ROCK PROPE	RTIES		
Porosity (%)	20-24	20-24	24			
Soj (%)	45-50	45-50	45			
Sgi (%)	50-55	50-55	55			
Permeability to air (md)	- 1	-	171	<u> </u>		
		RE	SERVOIR FLUID PROPE	RTIES		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (\$CF/\$TB) Initial oil FVF (RB/\$TB) Bubble point press. (psia)						
Viscosity (cp) @ °F						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.678 1,175	.678 1,175	.678 1,175			
Water: Salinity, NaCl (ppm)	8,900	13,400	-		·	
R _W (ohm/m) (77°F)						L
	1	ENH	IANCED RECOVERY PRO	DJECTS		
Enhanced recovery projects Date started Date discontinued				·		
		•				
				<u> </u>		
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						1,536,836 1967

Base of fresh water (ft.): See Areas.

Remarks

 $\underline{\underline{a}}/$ The gas zone is present in both the Main and West Areas.

BRENTWOOD OIL FIELD MAIN AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec	. т. ғ	k R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell 0il Co. "Ginochio Shellenberger"	Same as present	9	1N	2E	MD	4,299	First Massive	
Deepest well	4-9 Shell Oil Co. "Heidorn" 2-4	Same as present	4	1N	2E	MD	11,472		E-zone Late Cretaceous

			POOL DATA			
ITEM	PREWETT	FIRST MASSIVE	SECOND MASSIVE	THIRD MASSIVE		FIELD OR AREA DATA
Discovery date	May 1964 0 2,940 1,347	July 1962 50 670 476 16/64	January 1963 260 4,960 1,155 28/64	September 1962 0 <u>c/</u> 2,610 1,646 1/4	. (
reservoir temperature (*F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	1,693 124 - 680 <u>a/</u> Martinez Paleocene 3,770 80	1,650 132 1,050 840 <u>a/</u> Martinez Paleocene 3,600 250	1,750 140 1,000 780 <u>a</u> / Mokelumne River Late Cretaceous 3,770 95	1,850 140 900 880 <u>a</u> / Mokelumne River Late Cretaceous 4,025 180		830
		R	ESERVOIR ROCK PROPERT	TIES		
Porosity (%)	20-24 60 40 60 <u>b</u> /	27 60 40 60 <u>b</u> /	23 65 35 65 <u>b</u> / 242	23 65 35 65 <u>b</u> /		
		R	ESERVOIR FLUID PROPER	TIES		
Oil: Oil gravity (*API)	39	41	39	39		
Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F	1.22	1.17	1.17	1.28	,	
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.680	.650	.610	.710		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (okm/m) (77°F)	2,800	1,000	450	1,712		
		EN	HANCED RECOVERY PRO	JECTS		
Enhanced recovery projects Date startedDate discontinued						
<i>∠aic usconnautu</i>						
		,				-

Base of fresh water (ft.): The water obtained from the productive zones is relatively fresh.

Remarks:

a/ Initial gas content in the primary gas cap.
b/ Gas saturation in the primary gas cap.
c/ The well was deepened in 1964 as an oil well in the same zone; initial daily production: 240 bbl oil, 350 Mcf gas.

Selected References:

Peak oil production (bbl)
Year
Peak gas production, net (Mcf)
Year

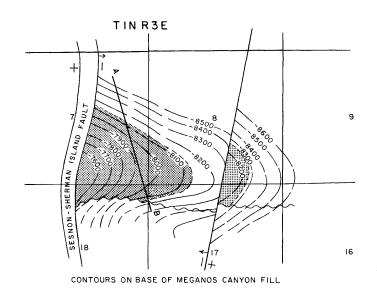
959,756 1964 4,582,291 1964

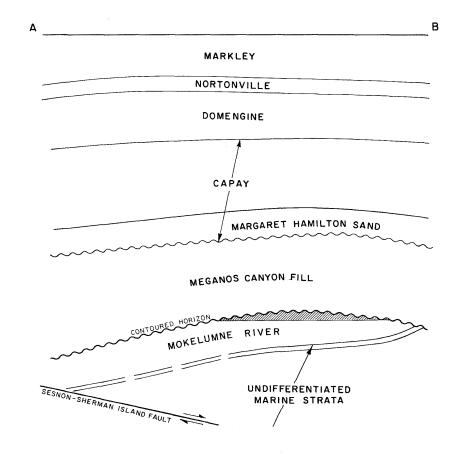
BRENTWOOD OIL FIELD WEST AREA

DISCOVERY WELL AND DEEPEST WELL

A STATE OF THE STA	Present operator and well designation	Original operator and well designation	Sec.	T. 6	k R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Ginochio" 1-16	Same as present	16	1N	2E	MD	4,535	Third Massive	ATT SATE DESIGNATION AND ADDRESS OF THE PARTY OF THE PART
Deepest well	Shell Oil Co. "Prewett" 3-5	Same as present	5	1N	2E	МО	6,328		Third Massive Late Gretaceous

POOL DATA								
ITEM	FIRST MASSIVE	SECOND MASSIVE	THIRD MASSIVE		·	FIELD OR AREA DATA		
Discovery date	June 1969 100	July 1963 202 88 300 24/64 1,780 148 1,000 800 Mokelumme River Late Cretaceous 4,000 100	May 1963 106 594 1,320 16/64 1,680 142 900 810 A/ Mokelumme River Lake Cretaceous 4,100 50					
		RE	SERVOIR ROCK PROPERT	TIES .		80		
Porosity (%)	27 60 40	25 65 35 65 <u>a</u> / 242	23 65 35 65 <u>a</u> /					
		RE	SERVOIR FLUID PROPERT	ries				
Oil: Oil gravity (*API)	1.17	38 400 1.17	39 500 1.28					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)		.610	.710					
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)		450	1,712		±*.			
	ENHANCED RECOVERY PROJECTS							
Enhanced recovery projects Date started								
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	_					135,047 1964 443,010 1964		


Base of fresh water (ft.): The water obtained from the productive zones is relatively fresh.


Remarks:

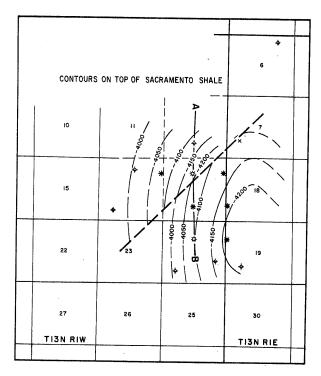
a/ Initial gas content in the primary gas cap.

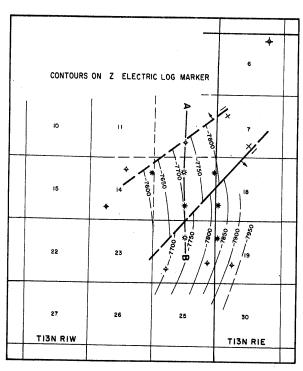
EAST BRENTWOOD GAS FIELD

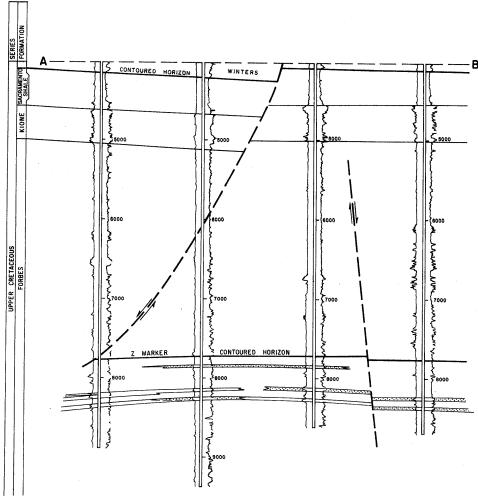
SERIES	FORMATION AND MEMBER	COMPOSITE ELECTRIC LOG
	MARKLEY	
	NORTONVILL	E #4000
EOCENE	DOMENGINE	
	CAPAY	6000
	MARGARE HAMILTON SAND	
PALEOCENE	MEGANOS CANYON FILL	7000
UPPER CRETACEOUS {	MOKELUMNE RIVER	F

BRENTWOOD, EAST, GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec.	r. & R.	B.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	DEPCO, Inc. "McLeod" 444-7	Same as present	7 1	N 3E	MD	9,122	Third Massive	Undiff Marine Late Cretaceous
Deepest well	Same as above	"	İ	11	"	17	"	17
	OCCIDENTAL "SHEW	POOL DATA	8	14	, n	12067	•	9)


	pro	· · · · · · · · · · · · · · · · · · ·	POOL DATA	,		TITLD 00	
ITEM	THIRD MASSIVE					FIELD OR AREA DATA	
Discovery date Initial production rates Oil (bbl/day)	April 1978						
Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	3,100 1,720 18/64			:			
Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	3,641 212				. '		
Initial gas content (MSCF/acft.) Formation	1,100 Mokelumme River Late Cretaceous 8,000			·			
Average net thickness (ft.) Maximum productive area (acres)	170 260						
		RE	SERVOIR ROCK PROPERT	TIES			
Porosity (%)	20 [†]						
Sgi (%) Permeability to air (md)	60 ^{l†}						
		RE	SERVOIR FLUID PROPERT	ries			
Oil: Oil gravity ('API)							
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.610 1,082				e e		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)							
•	ENHANCED RECOVERY PROJECTS						
Enhanced recovery projects Date started Date discontinued							
		,					
		·				· -	
Peak oil production (bbl) YearPeak gas production, net (Mcf)	1,665,529						
Year	1979						


Base of fresh water (ft.): 300

Remarks: Condensate production for 1979 was 4,815 barrels.

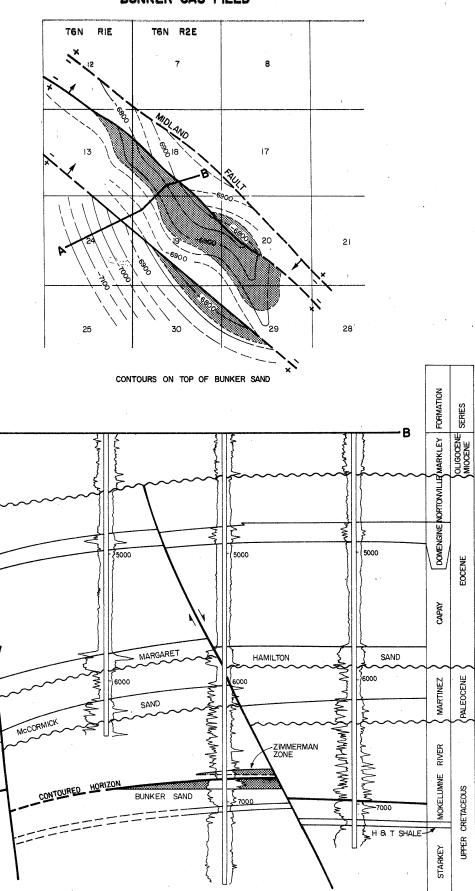
BUCKEYE GAS FIELD

COUNTY: COLUSA

BUCKEYE GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation	Original operator and well designation	Sec. T. &	R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery we	ell	Gulf Oil Corp. "Wilkens Unit A" 1	Western Gulf Oil Co. "F. J. Strain" 1	14 13N	1 W	MD	8,972	unnamed	
Deepest well		Gulf Oil Corp. "Wilkens Unit C" 1	Gulf Oil Corp. of Calif. "Wilkins Unit C"	24 13N	1W	MD	11,678		Funks Late Cretaceous


POOL DATA		
		FIELD OR AREA DAT

ITEM	UNNAMED					FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi)	2,450 1,800 9/16 4,115 - 5,950					
Reservoir temperature (°F)	Forbes Late Cretaceous 7,850-8,510 10-30					
	·	RI	SERVOIR ROCK PROPERT	ries		
Porosity (%)	21-24 43-53 47-57					
-		Ri	SERVOIR FLUID PROPERT	TIES		·
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.534 1,015					
Water: Salinity, NaCl (ppm)	15,400					
		ENI	IANCED RECOVERY PROJ	ECTS	L	<u>.</u>
Enhanced recovery projects Date started Date discontinued						
						·
Ĵ						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	1,553,025 1962					

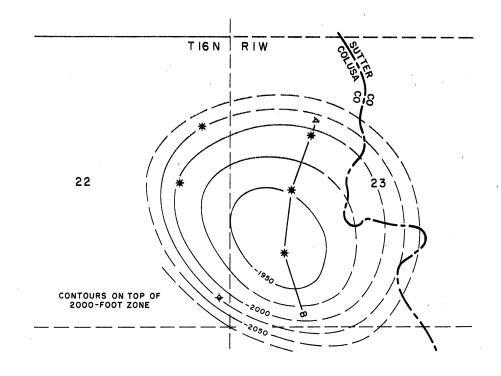
Base of fresh water (ft.): 1,950

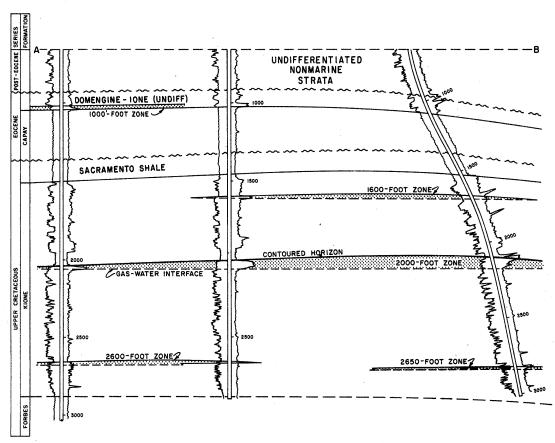
Selected References: Hunter, William J., 1962, Buckeye Gas Field: Calif. Div. of Cil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 1.

BUNKER GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess Corp., Unit Oper. "BGZU"	G. E. Kadane & Sons "Maine Prairie Gas Unit A" 1	20 6N 2E	MD	7,500	Bunker	
Deepest well	Amerada Hess Corp., Unit Oper. "BGZU" 702		19 6N 2E	MD	10,098	·	Winters Late Cretaceous


·			POOL DATA		
ITEM	ZIMMERMAN	BUNKER			FIELD OR AREA DATA
Discovery date	August 1961 3,890 2,250 9/32	June 1960 3,425 2,250 1/4	·		
pressure (psi)	2,930 145 1,000-1,600	2,975 145 1,100-1,600			·
Formation	Mokelumme River Late Cretaceous 6,780 15	Mokelumme River Late Cretaceous 6,845 25			 720
		R	ESERVOIR ROCK PROPERT	TIES	
Porosity (%)	21-28 35-45 55-65	23-28 35-45 55-65 250			
		R	ESERVOIR FLUID PROPERT	ries	
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Viscosity (cp) @ "F Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm)	.614 1,075	.614 1,075			
T.D.S. (ppm) R _W (ohm/m) (77°F)					
		EN	HANCED RECOVERY PROJ	ECTS	
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					10,457,830 1963


Base of fresh water (ft.): 2,500-3,100

Remarks

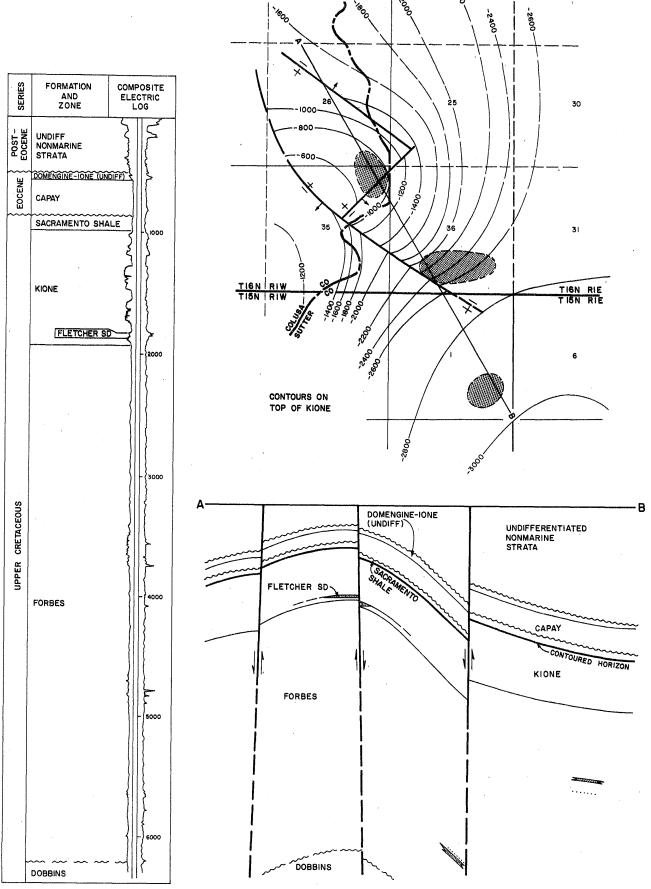
Selected References: Hunter, W. J., 1961, Bunker Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 47, No. 1.

BUTTE SINK GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Mobil Oil Corp. "Capital Co. Delta Farms" l	G. E. Kadane & Sons "Capital Co."Delta Farms" 1	23 16N 1W	MD	6,998	2,000-ft. zone 2,600-ft. zone	Forbes Late Cretaceous
Deepest well	Same as above		"	"	11:1	TI .	11

D	1	0	n	A	TA


			POOL DATA			
ITEM	1,000-FOOT ZONE	1,600-FOOT ZONE	1,950-FOOT ZONE	2,000-FOOT ZONE	2,600-FOOT ZONE	2,650-FOOT ZONE
Discovery date Initial production rates Oil (bbl/day)	August 1962	August 1962	August 1963	July 1962	July 1962	September 1962
Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	387 475 3/16	226 691 1/8	1,885 790 5/16	1,170 760 1/4	1,078 700 1/4	1,500 1,030 1/4
Initial reservoir pressure (psi)	460 92	735 97	930 108	935 108	115	1,220 115
Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net hickness (ft.) Maximum productive	Domengine-Ione Eocene 1,000	340 Kione Late Cretaceous 1,600 20	430 Kione Late Cretaceous 1,950 20	430 Kione Late Cretaceous 2,000 80	450 Kione Late Cretaceous 2,600 20	550 Kione Late Cretaceous 2,650 15
area (acres)						<u>a</u> /
		RE	SERVOIR ROCK PROPER	TIES	T	1
Porosity (%)	25*	25*	25*	25*	25*	25*
So; (%)	35* 65*	35* 65*	35* 65*	35* 65*	35* 65*	35* 65*
		RE	SERVOIR FLUID PROPER	TIES		
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.605 907	.605 926	.605	.605 829	.605 824	.605 807
Water: Salinity, NaCl (ppm)	7,000	7,000	7,000	7,000	7,000	7,000
		ENH	IANCED RECOVERY PRO	JECTS	 	
Enhanced recovery projects Date started Date discontinued						
		,				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					,	<u>b</u> /

Dase of fresh water (ft.): 400

Selected References: Hunter, W. J., 1963, Butte Sink Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 49, No. 2.

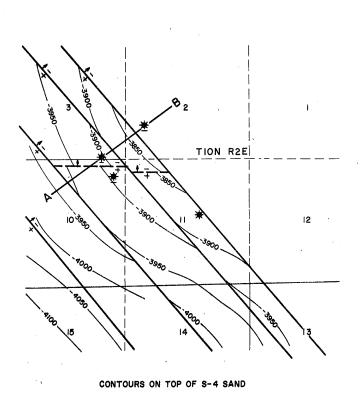
a/ Field productive area is 210 acres.
b/ Peak gas production for the field was 604,197 Mcf in 1967.

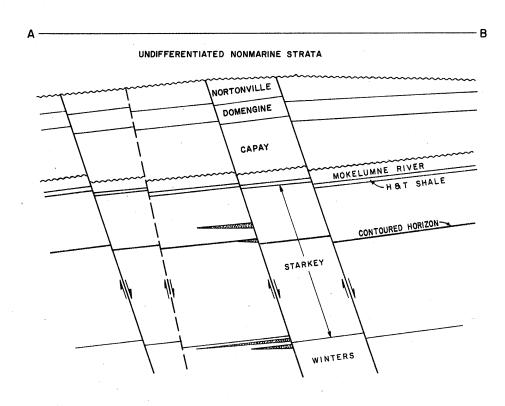
BUTTE SLOUGH GAS FIELD

COUNTY: COLUSA and SUTTER

BUTTE SLOUGH GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Mobil Oil Corp. "Belle Fletcher Hirst" 1	Humble Oil & Refining Co. "Belle Fletcher"	35 16N 1W	MD	2,077	Fletcher	
Deepest well	Atlantic Oil Co. "Scott-Straub" 1	Same as present	1 15N 1W	MD	8,042		Forbes Late Cretaceous


POO		\mathbf{r}	TA
ruu	ъ.	UΑ	II A

		POOL DATA			
FLETCHER	UNNAMED				FIELD OR AREA DATA
October 1955	September 1962		,		
478 635 3/16	1,700 800 5/16				
835 90	3,250-5,000 120-138				
420 Kione Late Cretaceous 1,815 35	640-1,700 Forbes Late Cretaceous 5,700-7,270 6-80				
					240
	RE	SERVOIR ROCK PROPERT	TIES	٠.	
25*	15-20***				
35* 65*	45-50*** 50-55***				
	RE	SERVOIR FLUID PROPERT	TIES		
.569 970	. 569 930-990				
2,300-22,300	• • • • • • • • • • • • • • • • • • •	•		·	
	ENH	IANCED RECOVERY PROJ	ECTS		
	•			. *	
					1,553,025
	October 1955 478 635 3/16 835 90 420 Kione Late Cretaceous 1,815 35 25* 35* 65*	October 1955 September 1962 478 635 800 3/16 835 90 120-138 420 Kione Late Cretaceous 1,815 35 15-20*** 25* 15-20*** 35* 65* RE 25* 15-20*** RE 25* 25* 25* 25* 25* 25* 25* 25* 25* 25	September 1962	TLETCHER	September 1962 1,700 635 800 5/16 835 3,250-5,000 120-138 640-1,700 Forbes Late Cretaceous 1,815 3,500-7,270 6-80 September 1962
Base of fresh water (ft.): 200

Remarks:

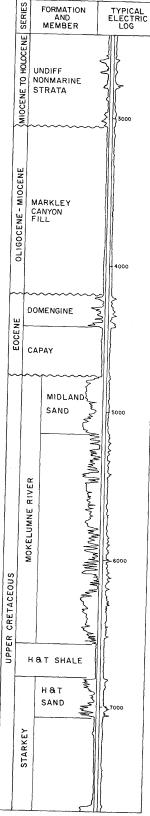
SERIES		MATION AND EMBER	COMP ELEC LO	TRIC
POST - EOCENE	UNDIF NONM STRA	IARINE	Med When	Acar
	NO	RTONVILLE		3000
<u>_</u>	DO	MENGINE	_{{{\{\!\!\!\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	}
EOCENI		CAPAY	ا ا	_ {3500
	M	OKELUMNE RIVER	}	
	нв	T SHALE		}
		S-I SANI	2 X	4000
		S-2 SANI	W. T. W. W. W. W. W. W.	
		S-3 SAN	0 \	}
	STARKEY	S-4 SANI	2	_ {.4500
6	STA	. ,		
UPPER CRETACEOUS		S-5 SAN	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 5000
		WINTERS	J. W. J. M.	5500

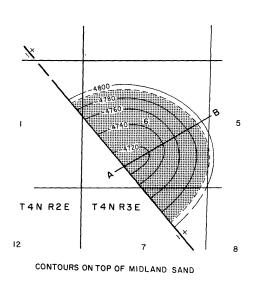
COUNTY: YOLO

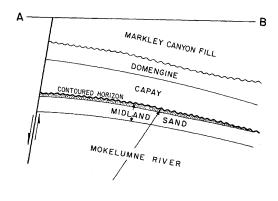
CACHE CREEK GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation	V	Sec. T. & R.		(leet)	Pool (zone)	Strata & age at total depth
	Discovery well	Chevron USA, Inc. "E. A. Payne et al" 1-11	Champlin Petroleum Corp. "E. A. Payne et al" 1-11	11 10N 2E	MD	10,990	Starkey	Dobbins Late Cretaceous
١	Deepest well	Same as above	11	**	"	, 11	71	"


	POOL DATA							
ITEM	STARKEY	WINTERS				FIELD OR AREA DATA		
Discovery date Initial production rates Oil (bbl/day)	August 1977	March 1979						
Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	1,355 955 1/4	1,500 1,760 1/2						
Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	1,141 125	1,994						
Initial gas content(MSCF/acft.). Formation Geologic age Average depth (ft.)	500-660 Starkey Late Cretaceous 3,924 3	690-950 Winters Late Cretaceous 5,000						
Average net thickness (ft.) Maximum productive area (acres)	3				·	160		
		R	SERVOIR ROCK PROPERT	TES				
Porosity (%)	28-34 [†] 40-45 [†]	22-28 [†] 40-45 [†]						
Swi (%)	55-60†	55-60†				· · · · · · · · · · · · · · · · · · ·		
	RESERVOIR FLUID PROPERTIES							
Oil: Oil gravity ("API)						·		
Viscosity (cp) @ °F	.602 895	.630 831						
Water: Salinity, NaCl (ppm)								
R _W (ohm/m) (77°F)								
		ENI	ANCED RECOVERY PROJ	ECTS	1	1		
Enhanced recovery projects Date started Date discontinued								
				-	-			
Peak oil production (bbl) YearPeak gas production, net (Mcf)	·							
Year					<u> </u>			


Base of fresh water (ft.): 1900-2100'


Remarks: Waiting on pipeline hookup.

CACHE SLOUGH GAS FIELD

(Abandoned)

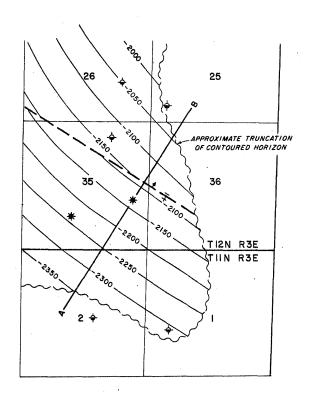
DECEMBER 1979

COUNTY: SOLANO

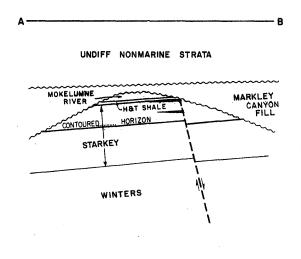
CACHE SLOUGH GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron USA Inc. "California Packing Corporation" 2	Standard Oil Company of Calif. "California Packing Corporation" 2	6 4N 3E	MD	4,840	Midland	
Deepest well		Standard Oil Company of Calif. "Peter Cook"	6 4N 3E	MD	7,730		Starkey Late Cretaceous


	POOL DATA									
ITEM	MIDLAND	UNNAMED				FIELD OR AREA DATA				
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi)	March 1945 14,867 1,697 5/8 2,120	July 1960 3,850 1,811 5/16 2,235								
Reservoir temperature ("F)	1,400 1,400 Mokelumne River Late Cretaceous 4,730 35	1,000-1,300 Mokelumme River Late Cretaceous 5,335 5				340				
		R	ESERVOIR ROCK PROPERT	TIES						
Porosity (%)	33 35 65	25-30*** 35-40*** 60-65***								
		R	ESERVOIR FLUID PROPER	ries						
Oil: Oil gravity (*API)										
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.570 ^{††} 1,000	.598 ^{††} 937				,				
Water: Salinity, NaCl (ppm)	18,000	15,200								
,		EN	HANCED RECOVERY PRO	JECTS						
Enhanced recovery projects Date started Date discontinued										
		, .								
Peak oil production (bbl) Year						2,558,328 1948				

Base of fresh water (ft.): 2,000-2,300


Remarks: Commercial gas deliveries began in December 1947 and ceased in October 1962. Seven wells were completed and cumulative gas production was 11,554,000 Mcf. The field was reactivated in July 1978 and produced an additional 317,146 Mcf of gas prior to abandonment in November 1980.

CATLETT GAS FIELD

SERIES	FORMATION AND MEMBER	TYF ELE L	PICAL CTRIC OG
MIOCENE TO	UNDIFF NONMARINE STRATA		المهرمهاميرياريماييريمياييري المهرمهاميرياريماييريماييريماييري
OLIGO-	MARKLEY CAN	YON	
	MOKELUMNE RIVER	; \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
	CONTOURED HORIZ	- Mary Mary	- 2000
			-{3000
	WINTERS	m	
	SACRAMENTO SHALE	_{	}
CEOUS	KIONE	24/4	- 4000
UPPER CRETACEOUS	FORBES	No March March	-5000
	GUINDA		-}6000

CONTOURS ON STARKEY MARKER

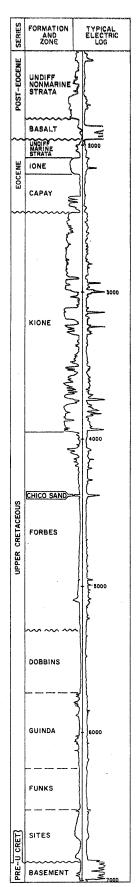
FEBRUARY 1980

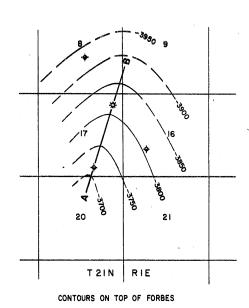
COUNTY: SUTTER

CATLETT GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Davis Oil Co. "Aileen Marty" 1	Same as present	35 12N 3E	MD	6,649	Starkey	Forbes Late Cretaceous
Deepest well	Same as above	"	"	"	"	"	"


POOL DATA FIELD OR AREA DATA ITEM STARKEY Discovery date ... Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) ... Bean size (in.) ... Initial reservoir pressure (psi) ... Reservoir temperature (°F) ... Initial gas content (MSCF/ac.-ft.) ... Formation Geologic age ... Average depth (ft.) ... Average net thickness (ft.) ... Maximum productive area (acres) ... December 1977 1,132 793 1/4 1,000 93 480-600 Starkey Late Cretaceous 2,250 120 **RESERVOIR ROCK PROPERTIES** 29-33† 40-45 † 55-60 † **RESERVOIR FLUID PROPERTIES** Specific gravity (air = 1.0)..... Heating value (Btu/cu. ft.)..... Water: Salinity, NaCl (ppm) T.D.S. (ppm) R_W (ohm/m) (77°F) **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects... Date started Date discontinued Peak oil production (bbl) Year Peak gas production, net (Mcf) Year


Base of fresh water (ft.): 1,400

Remarks: Commercial gas deliveries have not yet begun.

CHICO GAS FIELD

(Abandoned)

KIONE

CONTOURED HORIZON

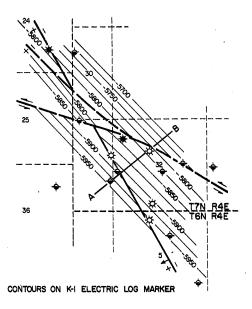
CHICO SAND

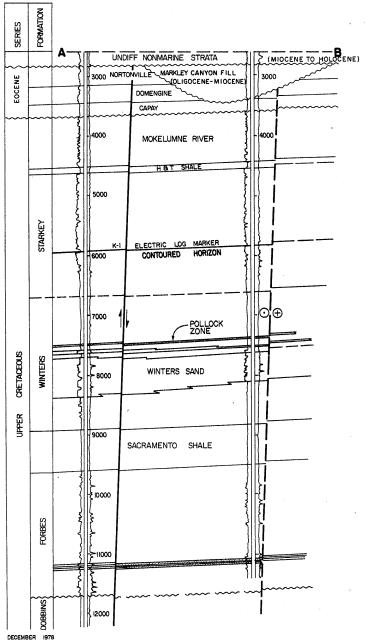
FORBES

COUNTY: BUTTE

CHICO GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Buttes Resources Company "Estes" 1	Richfield Oil Corp. "Chico" 1	17 21N 1E	MD	7,005	Chico	Forbes Late Cretaceous
Deepest well	Same as above	. "	"	"	11 .	. "	"


ITEM	CHICO					FIELD OR Area data
Discovery date	January 1944					
Oil (bbl/day) Gas (Mcf/day)	2,070					
Flow pressure (psi)	1,470					
Bean size (in.)Initial reservoir	17/64					,
pressure (psi)	1,630		` .			
Reservoir temperature (°F)	122					
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.).	530-730	•				
Formation	Forbes					
Geologic ageAverage depth (ft.)	Late Cretaceous 4,365	,				
Average net thickness (ft.)	20					1
Maximum productive						
area (acres)	160					
		RE	SERVOIR ROCK PROPERT	ries		
Porosity (%)	20-25***					
Soj (%)	40-45***					
Sg; (%)	55-60***	'				
Permeability to air (md)						
		RE	SERVOIR FLUID PROPERT	ries		<u> </u>
Oil:						
Oil gravity ('API)						
Viscosity (cp) @ °F						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.615 ^{††} 865				. *	,
Water: Salinity, NaCl (ppm) T.D.S. (ppm)						
R _w (ohm/m) (77°F)						
		EN	IANCED RECOVERY PROJ	ECTS		<u></u>
Enhanced recovery projects						
Date started Date discontinued	-					
			ŧ.			
]	1		
		'				
			1			
			1			
Peak oil production (bbl)						
YearPeak gas production, net (Mcf)	221,381		1			
Year	1947					ļ:
	l	L	L	L	L	1

Base of fresh water (ft.): 1,400

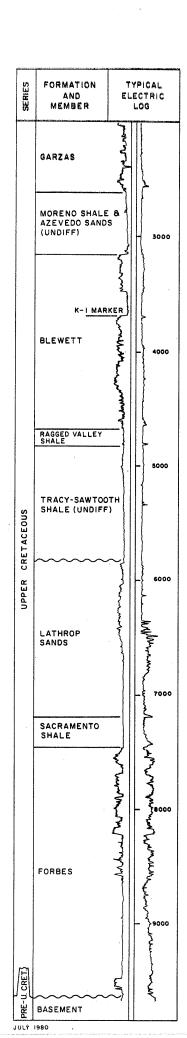
Remarks: Commercial gas deliveries began in September 1946 and ceased in October 1973. The field was abandoned in August 1975. Only one well was completed and cumulative gas production was 1,541,924 Mcf.

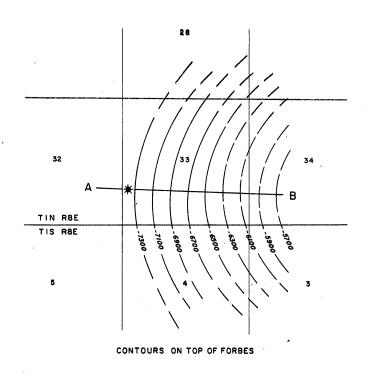
CLARKSBURG GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

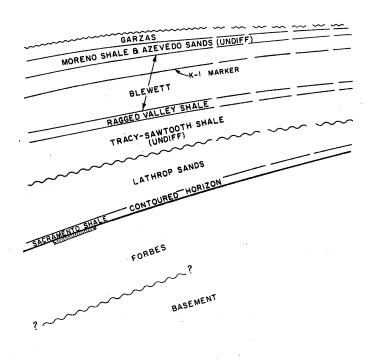
	Present operator and well designation	Original operator and well designation	Sec	. т.	& R.	B.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Occidental Petroleum Corp. "Pollock Unit" 1	Same as present	5	6N	4E	MD	11,648	Pollock	·
Deepest well	Union Oil Co. of Calif. "Union-Dow Standard Community 1" 1	Same as present	31	7N	4E	MD	12,235		Dobbins Late Cretaceous

POOL DATA FIELD OR AREA DATA ITEM POLLOCK FORBES (abd.) July 1963 June 1966 1,122 2,110 10/64 14.300 1,110 3,360 155 5,109 182 1,800 Winters 1,000 Forbes Late Cretaceous 7,450 20 Geologic age Average depth (ft.) ... Late Cretaceous 11,100 Average net thickness (ft.) ... Maximum productive area (acres) 50 480 RESERVOIR ROCK PROPERTIES 28 22 30 40 70 60 RESERVOIR FLUID PROPERTIES Oil: Oil gravity ('API) Sulfur content (% by wt.)..... Initial solution GOR (SCF/STB)...... -tai-al oil FVF (RB/STB)...... ('95ia)...... Gas: Specific gravity (air = 1.0)..... Heating value (Btu/cu. ft.)..... .607 .610 930 894 Water: Salinity, NaCl (ppm) ... T.D.S. (ppm) 12,200 11,500 Rw (ohm/m) (77°F) . **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects.. Date started Date discontinued Peak oil production (bbl) 686,595 1966 YearPeak gas production, net (Mcf)


Base of fresh water (ft.): 2 , 100


Remarks: Commercial gas deliveries began in January 1966. Production from the Forbes ceased in April 1973. The zone was abandoned in January 1974. Only one well had been completed in the Forbes and cumulative production was 119,580 Mcf.

Selected References: Lorshbough, A. L., 1966, Clarksburg Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 55, No. 1.


Year .

EAST COLLEGEVILLE GAS FIELD

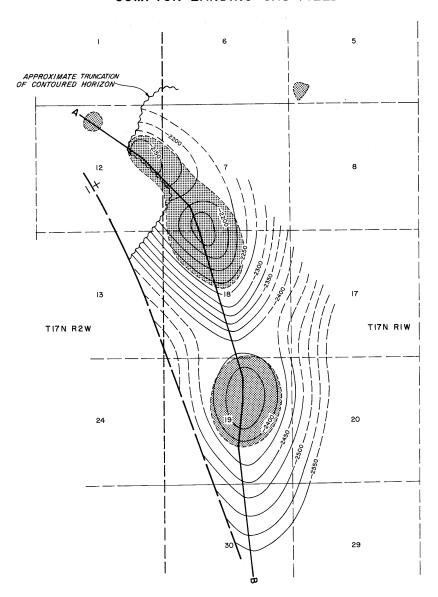
UNDIFFERENTIATED NONMARINE STRATA

COUNTY: SAN JOAQUIN

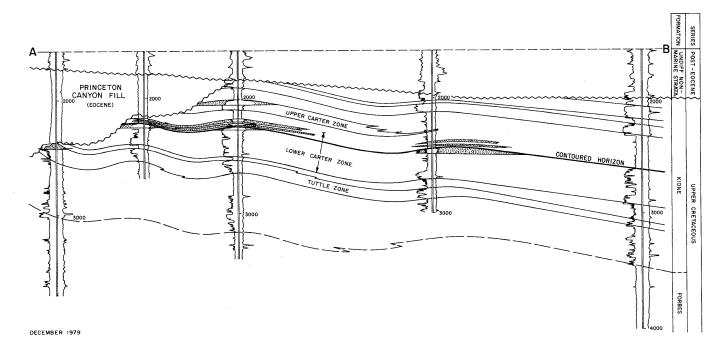
COLLEGEVILLE, EAST, GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

l		Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
l	Discovery well	Cheyron U.S.A. Inc. "Texaco-Chevron- Franzia Bros." 1-33	Champlin Petroleum Co. "Texaco-Chevron- Franzia Bros." 1-33	33 1N 8E	MD	9,657	Forbes	pre-Late Cretaceous
١	Deepest well	Same as above	11	"	"	"	"	"


PO		

			POOL DATA			
ITEM	FORBES					FIELD OR Area data
Discovery dateInitial production rates	September 1978					
Oil (bbl/day) Gas (Mcf/day)	454					
Flow pressure (psi)	717					
Bean size (in.)	8/64					
Initial reservoir pressure (psi)	2,850					
Reservoir temperature (°F)	144					
Initial oil content (STB/ac,-ft.)						
Initial gas content (MSCF/acft.).	770 Forbes					
Formation	Late Cretaceous					
Average depth (ft.)	7,455	'				
Average net thickness (ft.)	25			1		
Maximum productive	50					
area (acres)	30					
		RI	SERVOIR ROCK PROPER	TIES		
			1			
Porosity (%)	20					
Soj (%) Swj (%)	50**					
Sgi (%)	50**					
Permeability to air (md)						,
}		L	J		<u> </u>	
		RE	SERVOIR FLUID PROPER	TIES	T	
Oil: Oil gravity (*API)						
Gas:						
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.662 756					
Water: Salinity, NaCl (ppm) T.D.S. (ppm)	24,000 26,200					
R _W (ohm/m) (77°F)						
		ENF	IANCED RECOVERY PRO	JECTS		
Enhanced recovery projects Date started Date discontinued						
			. ,			
Peak oil production (bbl)						
Peak gas production, net (Mcf)						
Year		C-market				


Base of fresh water (ft.): 1,000+

Remarks: Commercial gas deliveries have not yet begun.

COMPTON LANDING GAS FIELD

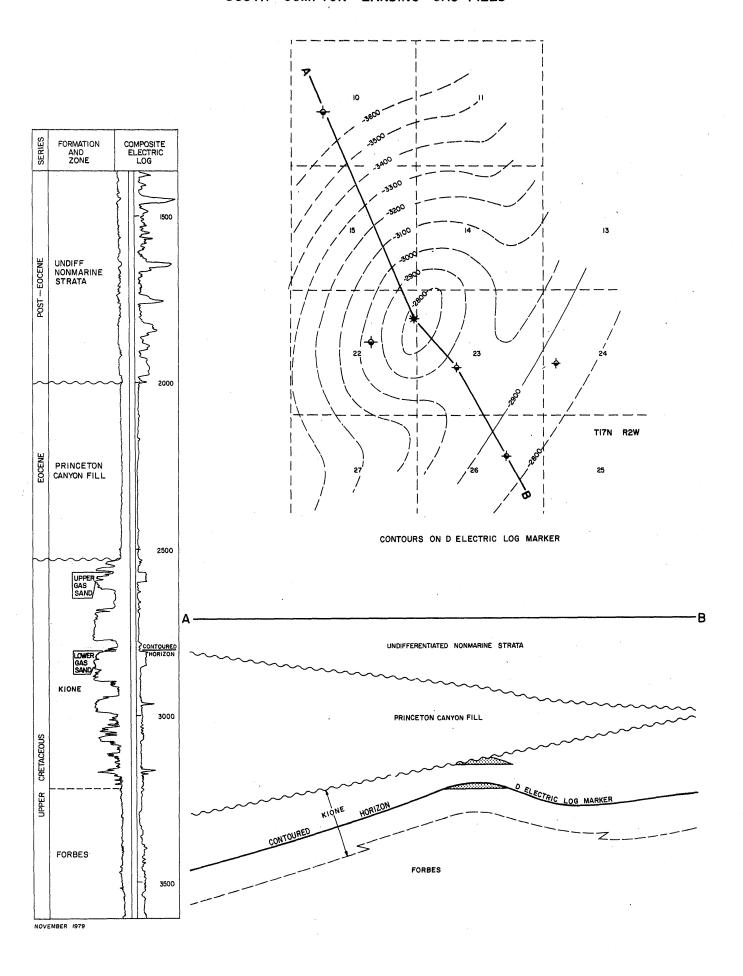
CONTOURS ON TOP OF MAIN CARTER SAND

COUNTY: COLUSA

COMPTON LANDING GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
	Discovery well	Exxon Corp. "Tuttle Unit 1" 1	Honolulu Oil Corp, "Honolulu-Humble Tuttle Unit" l	12 17N 2W	MD	3,700	Tuttle	
1	Deepest well	Aminoil USA, Inc. "Forry" l	Signal Oil & Gas Co. "Forry" l	30 17N 1W	MD	10,777		Venado Late Cretaceous


			POOL DATA			
ITEM	UPPER CARTER	LOWER CARTER	CATFISH	TUTTLE	UNNAMED	FIELD OR AREA DATA
Discovery date	November 1955 1,470 800 20/64	November 1955 1,650 860 20/64	September 1960 5,130 830 32/64	July 1955 1,400 990 16/64	July 1963 1,270 800 13/64	
Initial reservoir pressure (psi)	860 94 600 Kione Late Cretaceous 2,020 40	950 96 600-670 Kione Late Cretaceous 2,190 60	980 100 650 Kione Late Cretaceous 2,310 20	1,015 105 640 Kione Late Cretaceous 2,550 40	4,450 151 1,500 Forbes Late Cretaceous 6,260 15	
area (acres)						440
		RI	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	30* 25* 75*	28-31 25 75	30* 25* 75*	28* 25* 75*	20-24 *** 45-50 *** 50-55 ***	
Permeability to air (md)		DI DI	ESERVOIR FLUID PROPERT	TIFS		
Oil: Oil gravity ('API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.604 810	.604 797-824		.59 921	800	
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	12,000	12,000	17,600	12,000	12,000	
		ENI	HANCED RECOVERY PRO	JECTS .		•
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						1,089,651 1960

Base of fresh water (ft.): 1,300

Remarks:

Selected References: Bruce, Donald D., 1958, Compton Landing Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 44, No. 2.

SOUTH COMPTON LANDING GAS FIELD

COUNTY: COLUSA

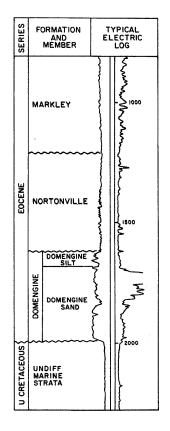
COMPTON LANDING, SOUTH, GAS FIELD

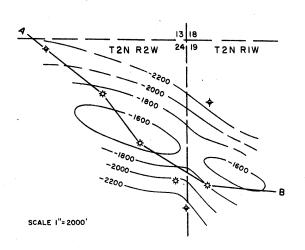
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Transamerica" 1-22	Same as present	22 17N 2W	MD	3,900	unnamed	Kione
Deepest well	Same as above	n .	"	. 11	"	u	Late Cretaceous

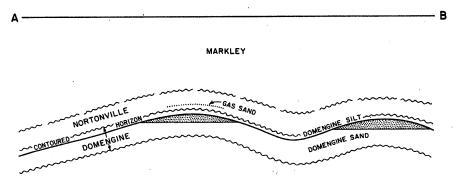
	POOL DATA							
ITEM	UNNAMED	UNNAMED				FIELD OR AREA DATA		
Discovery date	1,000	January 1976 8,500 1,150						
Initial reservoir pressure (psi)	1,180 104 590 Kione Late Cretaceous 2,600 50	1,270 106 630 Kione Late Cretaceous 2,850 15				40		
		RI	ESERVOIR ROCK PROPERT	TIES		40		
Porosity (%)		25-27*** 33*** 67***						
		RI	ESERVOIR FLUID PROPERT	TIES	<u> </u>			
Oil: Oil gravity ('API)								
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.633 797	. 643 780						
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)								
		EN	ANCED RECOVERY PROJ	IECTS .				
Enhanced recovery projects Date started Date discontinued								
		,						
·	,							

Base of fresh water (ft.): 1,600


Peak oil production (bbl)
Year
Peak gas production, net (Mcf)
Year


Remarks: In April 1980, Chevron U.S.A. Inc. completed well "Jimeno Rancho" 1, in Sec. 14, T. 17N, R. 2W, M.D.B. & M., opposite the Forbes Formation (Late Cretaceous) as a new pool discovery.

Selected References:


137,138 1979

CONCORD GAS FIELD (Abandoned)

CONTOURS ON TOP OF DOMENGINE SAND

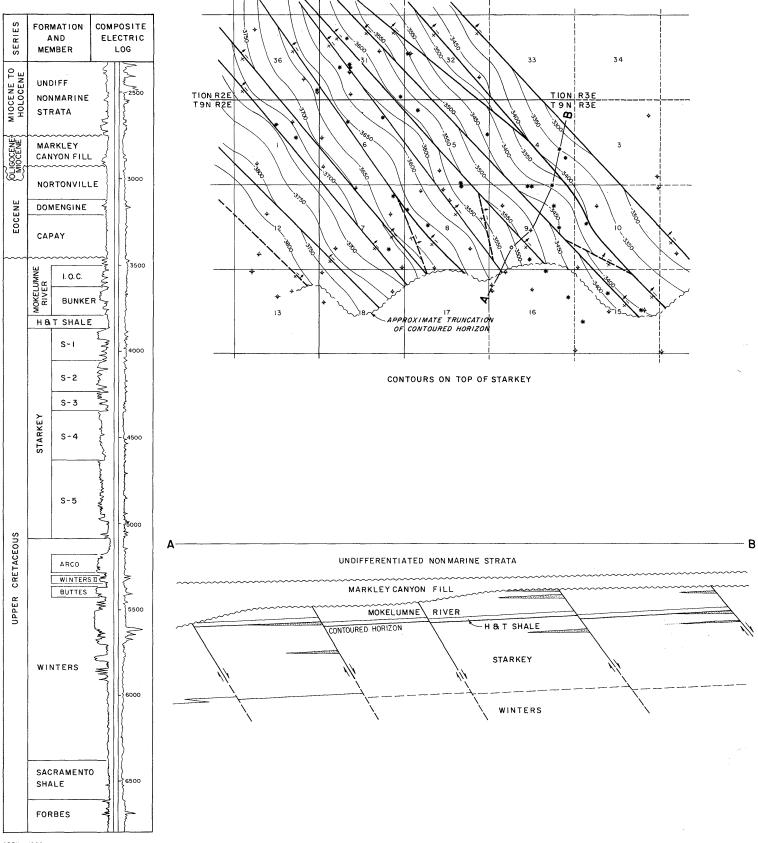
UNDIFFERENTIATED MARINE STRATA

COUNTY: CONTRA COSTA

CONCORD GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "Boylan" 1	Standard Oil Company of California	24 2N 2W	MD	4,442	Nortonville & Domengine <u>a</u> /	G- or H-zone Late Cretaceous
Deepest well	Same as above	"	"	"	"	"	


Deepest wen						
	г		,	POOL DATA	1	 FIELD OR
ITEM		NORTONVILLE	DOMENGINE			AREA DATA
Discovery date Initial production rat Oil (bbl/day) Gas (Mcf/day) Flow pressure (p Bean size (in.)	es osi)	December 1962 1,950 724 19/64	December 1962 2,725 780 3/8			
Initial reservoir pressure (psi) Reservoir temperatur Initial oil content (SI Initial gas content (N Formation Geologic age Average depth (ft.) Average net thicknes Maximum productivo area (acres)	re (°F)	1,240 81-83 690 Nortonville Eccene 1,650-1,800 5-15	1,200 82-88 640-890 Domengine Eocene 1,750-2,250 15-50			160
		,		RESERVOIR ROCK PROPER	TIES	
Porosity (%)		26* 35* 65*	25-30*** 25-35*** 65-75***			·
			-	RESERVOIR FLUID PROPER	TIES	
Oil: Oil gravity (*API) Sulfur content (% Initial solution GOR (SCF/STB Initial oil FVF (RB Bubble point pres Viscosity (cp) @	B)					
Gas: Specific gravity (a Heating value (Bt	uir = 1.0) u/cu. ft.)	.567†† 990	.570†† 980			
Water: Salinity, NaCl (p T.D.S. (ppm) R _W (ohm/m) (77		2,910	11,810			
			E	NHANCED RECOVERY PRO	JECTS	 F
Enhanced recovery Date started Date discontinue						
Peak oil production Year Peak gas production Year	, net (Mcf)					938,823 1964

Base of fresh water (ft.): Above 500

Remarks: Commercial gas deliveries began in March 1963 and ceased in June 1968. The field was abandoned in September 1969. Four wells were completed and cumulative gas production was 3,068,869 Mcf.

a/ Dual completion.

CONWAY RANCH GAS FIELD

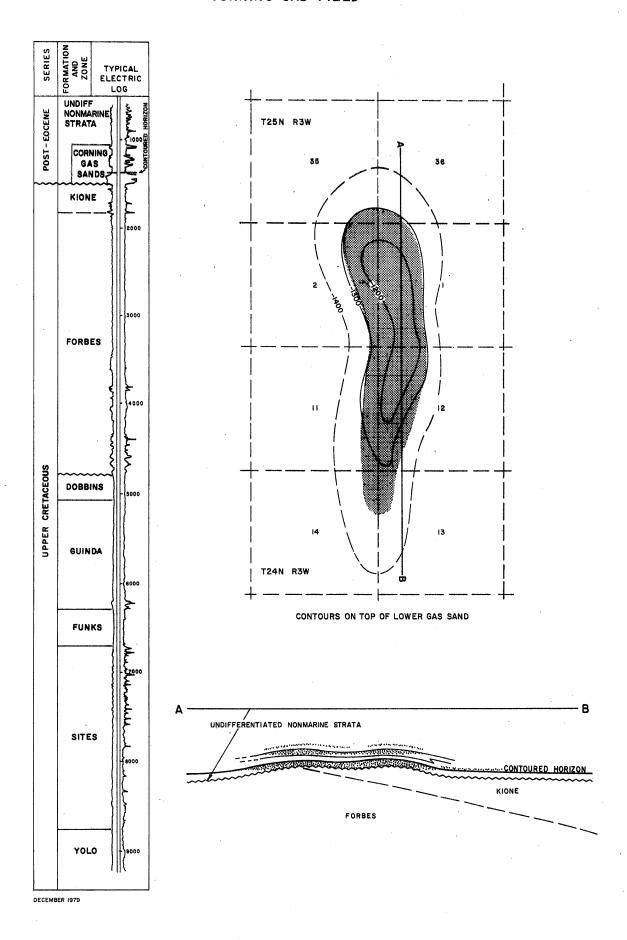
COUNTY: YOLO

CONWAY RANCH GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

-		Present operator and well designation	Original operator and well designation	Sec.	T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
-	Discovery well	Atlantic Oil Co. "I.O.C." 2	Same as present	8	9N	3E	MD	4,806	Starkey	
Control of the last	Deepest well	Buttes Resources Co. "Humble-Investment Opr., Inc." 2	Same as present	1	9N	2E	MD	6,700		Forbes Late Cretaceous

POOL DATA


		1	1 001 0	T		FIELD OR
ITEM	MOKELUMNE RIVER	STARKEY	WINTERS			AREA DATA
Discovery date	June 1973	July 1972	June 1974			
Gas (Mcf/day)	5,310	6,600 1,425-1,500	5,750			
Flow pressure (psi)	1,110	1,425-1,500	1,710			
Bean size (in.)Initial reservoir	Variable	21/64	6/16		'	
pressure (psi)	1,340	1,762	2,380			
Reservoir temperature (°F)	99	107	118		:	
Initial oil content (STB/acft.)	540-790	760 1 100				
Initial gas content (MSCF/acft.). Formation	Mokelumne River	760-1,100 Starkey	860-1,300 Winters			
Geologic age	Late Cretaceous	Late Cretaceous	Late Cretaceous			•
Average depth (ft.)	2,850-3,100	3,300-4,300	5,150-5,300			
Average net thickness (ft.)	0-80	0-60	0-50			
Maximum productive area (acres)	385	880	220			
area (acres)						
·		R	ESERVOIR ROCK PROPERT	TIES		
Porosity (%)	24-30†	26-32†	22-28†			
Soi (%)	35-45†	35-45†	35-45†			
Swi (%)	55-65†	55-65 t	55-451 55-65†			
Permeability to air (md)			1			
		J		<u> </u>	<u> </u>	5.
		R	ESERVOIR FLUID PROPERT	TIES		
Oii:						
Oil gravity (°API)						
Sulfur content (% by wt.)	·	:				
Initial solution GOR (SCF/STB)						
Initial oil FVF (RB/STB)						
Bubble point press, (psia)						
Viscosity (cp) @ °F						
Gas:						
Specific gravity (air = 1.0)	.660	.650	.658			
Heating value (Btu/cu. ft.)	758	779	762			
Water:						·
Salinity, NaCl (ppm)						
T.D.S. (ppm)						
R _W (ohm/m) (77°F)						
		ENI	HANCED RECOVERY PROJ	ECTS		•
Enhanced recovery projects						
Date started						
Date discontinued						
•						
		,				
Peak oil production (bbl)						
Year					,	
Peak gas production, net (Mcf)						3,824,342 1975
Year						15/3
***************************************		<u> </u>		<u> </u>	·	

Base of fresh water (ft.): 2,200-2,600

Remarks:

Selected References: Campion, J. T., Jr., 1980, Conway Ranch Gas Field: Calif. Div. of Oil and Gas Publication TR24, p. 1-13.

CORNING GAS FIELD

COUNTY: TEHAMA

CORNING GAS FIELD

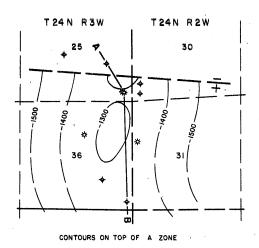
DISCOVERY WELL AND DEEPEST WELL

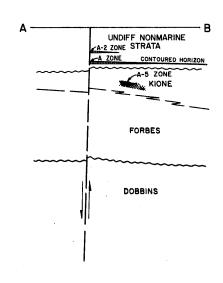
	Present operator and well designation	Original operator and well designation	Sec. T. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	The Superior Oil Co. "Saldubehere" l	Same as present	12 24N 3W	MD	9,225	Corning Sands	Yolo Late Cretaceous
Deepest well	Same as above		"	"	"	11	"

			POOL DATA		
ITEM	CORNING SANDS				FIELD OR AREA DATA
Discovery date	October 1959 17,676 380 1				
Initial reservoir pressure (psi) Reservoir temperature (*F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	415-645 90-96 300-380 undiff. nonmarine post-Eocene 980-1,450 5-120				
		RI	ESERVOIR ROCK PROPER	TIES	
Porosity (%)	29-33 25-30 70-75 600-1,900				
		RI	ESERVOIR FLUID PROPER	TIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press, (psia) Viscosity (cp) @ *F					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.657†† 760				
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	5,000-14,000				
		EN	IANCED RECOVERY PRO	JECTS	
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	1,349,947 1955				

Base of fresh water (ft.): 1,000

Remarks: Commercial gas deliveries began in July 1954 and the field was abandoned in July 1971.


The field was reactivated in July 1974.


Selected References:

DATE:

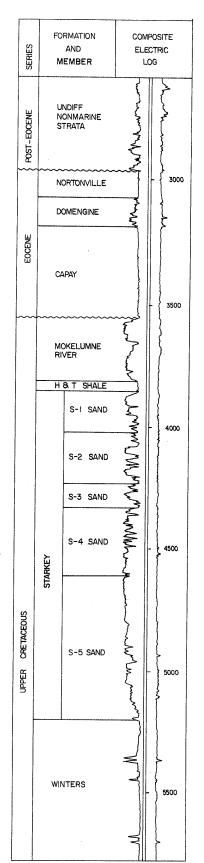
SOUTH CORNING GAS FIELD (Abandoned)

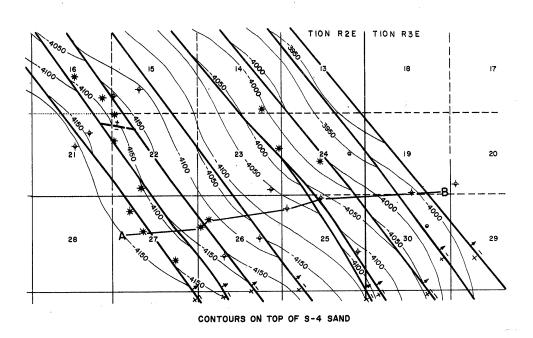
SERIES	FORMATION	ZONE	COMPOSITE ELECTRIC LOG
POST-EOCENE	UNDIFF NONMARINE STRATA	A-2	
-	KIONE	A-2	had Menter of the of the of the own of the office of the own of th
UPPER CRETACEOUS	FORBES		- 4000
	SNIBBOO	~~~~	

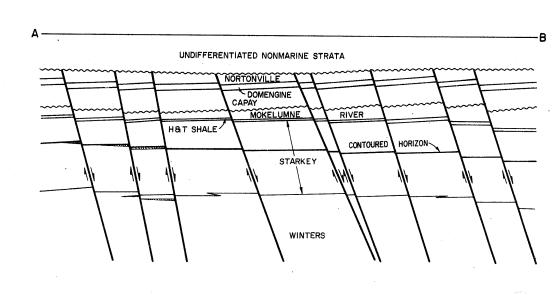
COUNTY: TEHAMA

CORNING, SOUTH, GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Buttes Resources Co. "Saldubehere-	The Buttes Oilfields, Inc. "Saldubehere- Buttes" A	25 24N 3W	MD	2,365	A	
Deepest well		Same as present	25 24N 3W	MD	8,253		Sites Late Cretaceous


POOL DATA								
ITEM	A-2	Α	A-5			FIELD OR AREA DATA		
Discovery dateInitial production rates Oil (bbl/day)	May 1957	February 1951	September 1959					
Gas (Mcf/day)	2,000 340 1/2	1,955 635 3/8	2,995 880 3/8					
pressure (psi)	520 80	680 90	1,010					
Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive	320-390 undiff. nonmarine post-Eccene 1,185 10	350-420 undiff. nonmarine post-Eccene 1,560 15	460-560 Kione Late Cretaceous 2,340 20					
area (acres)			<u></u>			80		
		RE	SERVOIR ROCK PROPER	TIES				
Porosity (%)	29-33	29-33	25-28***					
Soj (%)	25-30 70-75	25-30 70-75	35-40*** 60-65***					
.*		RE	SERVOIR FLUID PROPER	TIES				
Oil: Oil gravity (*API)								
Viscosity (cp) @ °F	.615†† 870	.615†† 870	.584†† 940					
Water: Salinity, NaCl (ppm)					·			
R _W (ohm/m) (77°F)								
		ENF	IANCED RECOVERY PRO	DIECIS	Γ			
Enhanced recovery projects Date started Date discontinued								
Peak oil production (bbl)								
Peak gas production, net (Mcf) Year						218,595 1956		


Base of fresh water (ft.): 1,100

Remarks: Commercial gas deliveries began in July 1954 and ceased in August 1971. The field was abandoned in August 1972. Four wells were completed and cumulative gas production was 1,256,799 Mcf.

CROSSROADS GAS FIELD

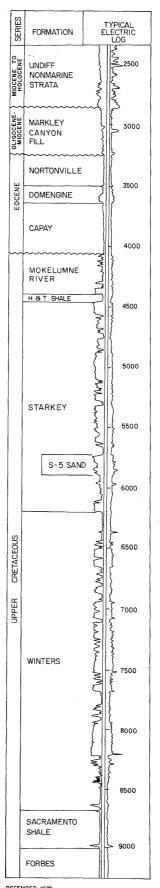
COUNTY: YOLO

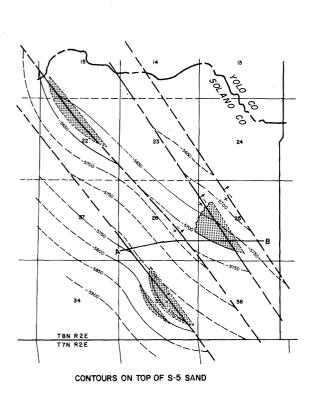
CROSSROADS GAS FIELD

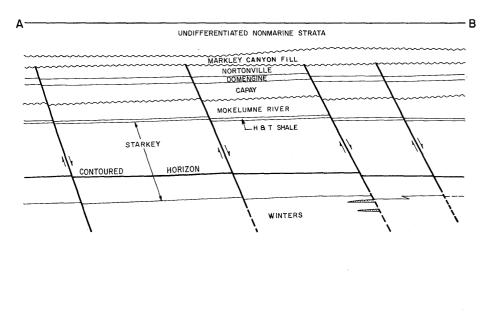
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron USA Inc. "Amstar" 1	Standard Oil Company of Calif. "Amstar" 1	22 10N 2E	MD	7,850 <u>a</u> /		Forbes Late Cretaceous
Deepest well	Same as above	"	"	"	11	"	11

O	ΩI	. D	A٦	'Α
v	v	. v	MI	^


		EIELD OD				
ITEM	STARKEY (S-3)	WINTERS				FIELD OR AREA DATA
Discovery date	May 1976	May 1976				
Initial production rates	,					
Oil (bbl/day) Gas (Mcf/day)	2,000	2,600				
Flow pressure (psi)	1,628 1/2	1,710 1/2				
Bean size (in.) Initial reservoir						
pressure (psi) Reservoir temperature (°F)	2,050 114	2,440 120				
Initial oil content (STB/acft.)						
Initial gas content (MSCF/acft.).	970-1,300 Starkey	910-1,300 Winters				
Formation	Late Cretaceous	Late Cretaceous				
Average depth (ft.)	4,150 35	4,985 20				
Average net thickness (ft.) Maximum productive	33	20				
area (acres)		1.				1,060
		RE	SERVOIR ROCK PROPERT	TES		
		00.001				
Porosity (%)	28-34 †	22-28†				
So; (%)	40-45 †	40-45†				
Sgi (%)	55-60†	55-60†				
Permeability to air (md)						
		RE	SERVOIR FLUID PROPERT	TES		
Oil:						
Oil gravity (°API)						
Sulfur content (% by wt.) Initial solution						
GOR (SCF/STB)						
Initial oil FVF (RB/STB)						
Bubble point press. (psia) Viscosity (cp) @ °F						
Gas: Specific gravity (air = 1.0)	.587	.592				.578
Heating value (Btu/cu. ft.)	938	930				961
Water:						
Salinity, NaCl (ppm)						
T.D.S. (ppm) R _W (ohm/m) (77°F)						
(5,000)		FNH	IANCED RECOVERY PROJ	FCTS	<u> </u>	L
		Livi				
Enhanced recovery projects Date started						
Date discontinued						
				•		
		1				
	,					
Peak oil production (bbl)						
YearPeak gas production, net (Mcf)	980,448	390,342				
Year	1979	1979				
		L	L	L	l	l


Base of fresh water (ft.): 2,500


Remarks: Commercial gas deliveries began in September 1977,

 $\underline{\underline{a}}/$ Directional well, true vertical depth is 6,112 feet.

DAVIS SOUTHEAST GAS FIELD

DECEMBER 1978

COUNTY: SOLANO and YOLO

DAVIS, SOUTHEAST, GAS FIELD

432,204 1973

DISCOVERY WELL AND DEEPEST WELL

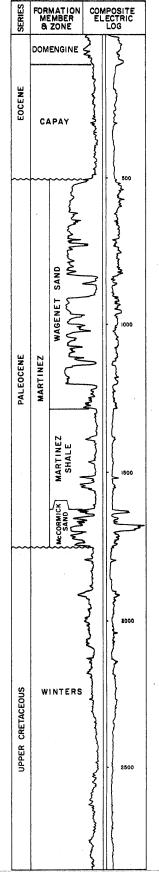
		Present operator and well designation	Original operator and well designation	Sec.	т. е	k R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
١	Discovery well	Phillips Petroleum Co. "Beltrami A" 1	Same as present	25	8N	2E	MD	9,207	Winters	Forbes
	Deepest well	Same as above	11		11		"	"	**	Late Cretaceous

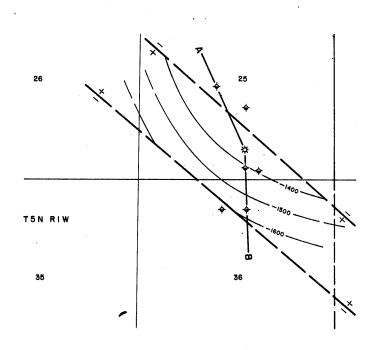
	*					
ITEM	DOMENGINE	STARKEY	WINTERS			FIELD OR AREA DATA
Discovery date	November 1977 a/ 1,782 500 3/8 930 114 400 Domengine Eocene 3,535 5	October 1973 b/ 2,010 2,125 1/2 2,850 127 1,600-2,000 Starkey Late Cretaceous 6,130 9	April 1965 c/ 6,269 1,780 3/8 2,910 134 1,200-1,700 Winters Late Cretaceous 6,450 15			. 290
		RE	SERVOIR ROCK PROPER	TIES	I	
Porosity (%)	25 ** 40 ** 60 **	29-32† 25-35† 65-75†	25-28† 30-45† 55-70†			
·		RE	SERVOIR FLUID PROPER	TIES	,	
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ "F						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.630 ^{††} 854	.610 ^{††} 871	.597 ^{††} 925			
Water: Salinity, NaCl (ppm)	. -	12,670	12,980			
		ENH	ANCED RECOVERY PRO	JECTS	·	
Enhanced recovery projects Date started Date discontinued						
				,		

Base of fresh water (ft.): 2,600-3,100

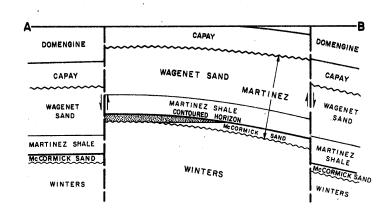
Peak oil production (bbl)
YearPeak gas production, net (Mcf)
Year

Remarks: Commercial gas deliveries began in December 1966.


a/ Date of recompletion. Originally completed in the Winters formation. The well was abandoned in 1978.


b/ Abandoned in April 1979.

c/ Abandoned in April 1971, reactivated in July 1972, and abandoned in June 1978.


Selected References: Johnson, R. A., 1980, Davis Southeast Gas Field: Calif. Div. of Oil and Gas Publication TR24, p. 15-21.

DENVERTON GAS FIELD (Abandoned)

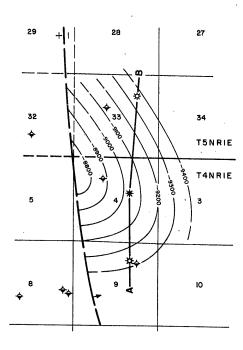
CONTOURS ON TOP OF MCCORMICK SAND

COUNTY: SOLANO

DENVERTON GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

The second second		Present operator and well designation	Original operator and well designation Sec			R.	B.&M. Total depth (feet)		Pool (zone)	Strata & age at total depth
l	Discovery well Getty Oil Co. "A. Peterson" 1		Honolulu Oil Corp. "A. Peterson" 1	25	5N	1W	MD	1,801	McCormick	
-	Deepest well	Chevron USA Inc. "H. D. Peterson et al 558" 25	Standard Oil Co. of Calif. "H. D. Peterson et al 558" 25	25	5N	1W	MD	6,000		undiff, marine Late Cretaceous


Г			POOL DATA	Γ		FIELD_OR
ITEM	McCORMICK					AREA DATA
Discovery date	August 1948 1,110 750					
Bean size (in.)	14/64 873 95 330-440	•				
Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive	Martinez Paleocene 1,425 25				·	
area (acres)		RE	SERVOIR ROCK PROPERT	[]		
	22.05***	1				
Porosity (%)	22-25*** 35-40*** 55-65***					
		RE	SERVOIR FLUID PROPER	TIES		
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.611 1,033					
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	3,080					
		ENI	HANCED RECOVERY PRO	JECTS	<u></u>	Γ
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl)						
Peak gas production, net (Mcf) Year	99,910 1950					

Base of fresh water (ft.): 100-900

Remarks: Commercial gas deliveries began in October 1948 and ceased in December 1952. The field was abandoned in March 1953. Only one well was completed and cumulative gas production was 231,525 Mcf.

DENVERTON CREEK GAS FIELD

SERIES	FORMATION	MEMBER & ZONE	TYPICAL ELECTRIC LOG
POST-	NONMARINE FOR	SIKAIA	3000
EOCENE	MARKLEY		5000
В	MORTON-	ENGINE (
	САРАҮ		7000
	MEGANOS	MARGARET HAMILTON SAND MEGANOS "C" SHALE	- } 8000
UPPER PALEOCENE	A SASS MARTINEZ	WAGENET SAND WAGENET SAND MARTINEZ SHALE DEWERTON SAND MCORMICK SAND MCORMICK SAND MCORMICK SAND MCORMICK SAND MCORMICK SAND MCORMICK SAND MCORMICK SAND MCORMICK SAND MCORMICK SAND MCORMICK SAND MCORMICK SAND	month of home and have a sound of the sound

CONTOURS ON TOP OF MCCORMICK SAND

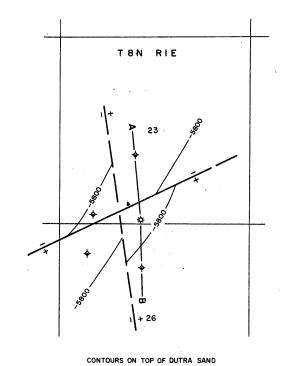
MARKLEY	
NORTONVILLE	
DOMENGINE	
CAPAY	
HAMILTON SAND	
MEGANOS "C" SHALE & SAND	~~~~~
WAGENET SAND	-
WAR	
DENVERTON SAND	MARTINEZ SHALE
CONTOURED SAND	~~~~
MACHELUMNE RIVER STARKEY	
HAT SHALE	
1	
	NORTONVILLE DOMENGINE CAPAY MARGARET HAMILTON SAND MEGANOS "C" SHALE D B E ZONE SHALE B SAND

DENVERTON CREEK GAS FIELD

COUNTY: SOLANO

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	т. ғ	k R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Mobil Oil Corp. "Trojan Powder Co." 1	Same as present	33	5N	1E	MD	11,209	unnamed	Winters Late Cretaceous
Deepest well	Same as above	n		**		"	"	"	"


			POOL DATA			
ITEM	ANDERSON-WAGENET	DENVERTON (Heidorn)	UNNAMED			FIELD OR AREA DATA
Discovery date	September 1967 158 2,650 1/2 3,730	November 1968 4,947 1,600 20/64 4,680	0ctober 1966 1,285 2,110 14/64 4,800		,	
pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	178	1,400 Martinez Paleocene 8,930 35	194 1,600 Starkey Late Cretaceous 9,890 30			220
			RESERVOIR ROCK PROPER	RTIES		
Porosity (%)	20-24*** 35-40*** 60-65***	21 40 60 5	22 37 63			
		P	RESERVOIR FLUID PROPER	RTIES		
Oil: Oil gravity ('API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.660 1,045	.659 1,045	.660 1,070			
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	. [4,110-34,000	9,930			
		EN'	NHANCED RECOVERY PRO	OJECTS		-
Enhanced recovery projects Date started Date discontinued	.					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						225,706 1977

Base of fresh water (ft.): Less than 500

Remarks: Commercial gas deliveries began in March 1967 and ceased in May 1971. The field was abandoned in January 1973.
The field was reactivated in October 1977.

DIXON GAS FIELD (Abandoned)

SERIES	FORMATION MEMBER & ZONE	TYPICAL ELECTRIC LOG
POST-EOCENE	UNDIFF NONMARINE STRATA	- Lucanian Maria
	NORTONVILLE	~ \
EOCENE	DOMENGINE	3500
EO		
	CAPAY	4000
UPPER CRETACEOUS	STARKEY THE PROPERTY OF THE PR	4500 - 45
	WINTERS	
	DUTRA SD.	6000

STARKEY

STARKEY

WINTERS

CONTOURED HORIZON
DUTRA SAND

3 RD MAIN SD

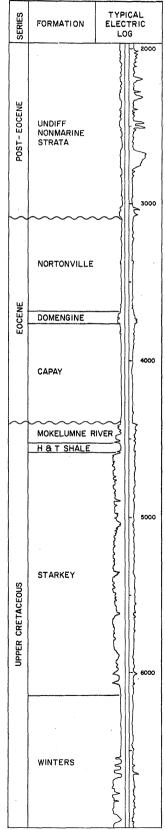
WINTERS

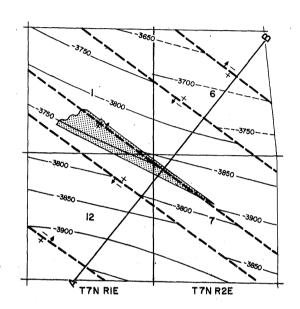
DECEMBER 1979

COUNTY: SOLANO

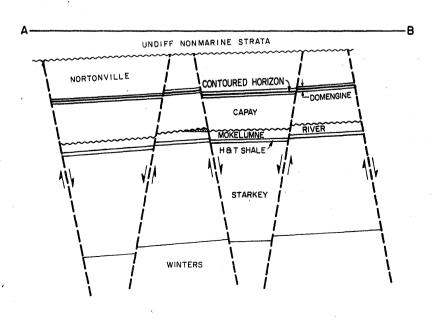
DIXON GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


		Present operator and well designation				ŁR.	Tota dept B.&M. (fee		Pool (zone)	Strata & age at total depth
ı	Discovery well	Q. R. Grenfell & Son "Dutra et al" 1	S. M. Reynolds Oper. "Dutra et al"1	23	8N	IE	MD	6,205	Winters	-
	Deepest well	Cameron Oil Co. "Burroughs"l	Same as present	23	8N	1E	MD	7,912		Winters Late Cretaceous


			POOL DATA			
ITEM	DUTRA	1ST MAIN	3RD MAIN			FIELD OR AREA DATA
Discovery date	June 1963 See remarks	June 1963 See remarks	January 1963 See remarks			
Bean size (in.)	2,685 118	2,670 120	2,760 122			
Initial gas content (MSCF/acft.). Formation	1,100-1,400 Winters Late Cretaceous 5,860 10	1,100-1,400 Winters Late Cretaceous 5,950 15	1,200-1,400 Winters Late Cretaceous 6,150 10		·	80
		l F	LESERVOIR ROCK PROPER	TTIES	L	
Porosity (%)	24-27 35-40 *** 60-65 ***	24-27 35-40 *** 60-65 ***	24-27 35-40 *** 60-65 ***			
· · · · · · · · · · · · · · · · · · ·		<u> </u>	ESERVOIR FLUID PROPER	ITIES		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.615†† 870	.620†† 865	.620†† 865			
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	17,000	.10,443	10,443			
		EN	HANCED RECOVERY PRO	DJECTS		
Enhanced recovery projects Date started Date discontinued						
						-
Peak oil production (bbl) YearPeak gas production, net (Mcf) Year						226,023 1964

Base of fresh water (ft.): 2,700


Remarks: Commercial gas deliveries began in June 1964. The single producing well was abandoned in January 1971 with a cumulative production of 636,502 Mcf.
Production from the three zones was commingled. During a back-pressure test in June 1963, gas was produced as follows: Dutra zone: 5,000 Mcf
per day, 2,140 psi flow pressure, 5/16" bean; 1st and 3rd Main zones (commingled): 4,880 Mcf per day, 2,100 psi flow pressure, 5/16" bean.

EAST DIXON GAS FIELD (Abandoned)

CONTOURS ON ELECTRIC LOG MARKER IN DOMENGINE

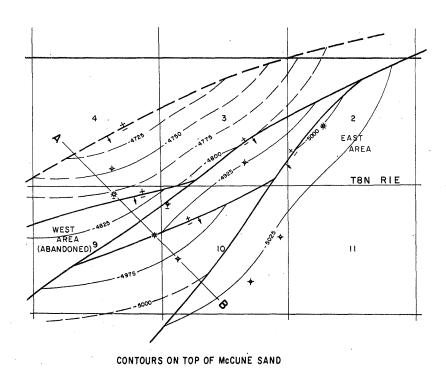
JULY 1980

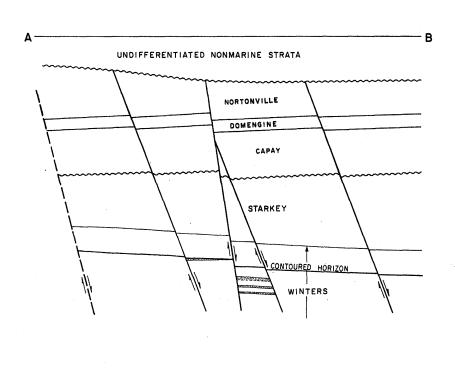
COUNTY: SOLANO

DIXON, EAST, GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

Present operator and well design		-	1		-	well designati		Sec. T. & R.		Total depth (feet)	Pool (zon		Strata & age at total depth	
Discovery well	Coastal Oil	& Gas Corp. "E. Dixon"	' 1	Gas Producing Enterprises "E. Dixon" 1			7 7N 2E	MD	1	Mokelumne R	iver	Winters Late Cretaceou		
Deepest well	Same as abo	ve			11			"	<u>"</u>	"	11		"	
		POOL DATA												
ITEM	1	MOKELUMNE RIVER								·			FIELD OR REA DATA	
Discovery date Initial production r. Oil (bbl/day) Gas (Mcf/day) Flow pressure elean size (in.) Initial reservoir pressure (psi) Reservoir temperatunitial oil content (Initial gas content(Formation Geologic age Average depth (ft.) Average depth (ft.) Average der thickn Maximum producti area (acres)	psi)	l 1												
				R	SERVOIR RO	OCK PROPER	TIES							
Porosity (%)		15† 58† 42†												
				RI	SERVOIR FL	UID PROPER	TIES							
Oil: Oil gravity ("API Sulfur content (" Initial solution GOR (SCF/S' Initial oil FVF (" Bubble point pre Viscosity (cp) @ Gas: Specific gravity Heating value (I Water: Salinity, NaCl (T.D.S. (ppm) Rw (ohm/m) (7	% by wt.) (B)	.580 965												
				ENI	HANCED REC	COVERY PRO	JECTS							
Enhanced recovery Date started Date discontinu														
					,				,					
Peak oil productio Year Peak gas productio Year	on, net (Mcf)												68,032 1981	


Base of fresh water (ft.): 2,700-2,800


Remarks: Commercial gas deliveries began in January 1980. The field was abandoned in November 1981. Cumulative production is 68,032 Mcf.

Selected References:

DRY SLOUGH GAS FIELD (Abandoned)

SERIES		MATION AND EMBER	ELE	CTRIC OG
POST - EOCENE	UNDI NONI STRA	MARINE		Myooo What was a second with the second was a second was a second with the second was a second with the second was a second with the second was a second with the second was a second with the second was a second with the second was a second with the second was a second with the second was a second with the second was a second with the second was a second with the second was a second with the second was a second with the second was a second with the second was a second with the
	NOR	TONVILLE		3000
ENE	DOM	ENGINE	4	<u>ک</u> ک
EOCENE	CAP	ΑΥ		3500
	~~~	S-3		4000
	STARKEY	S-4		
raceous	IS .	S-5	Mondon	4500
UPPER CRETACEOUS	WIN	MCCUNE SAN	WWW M	5000





### **DRY SLOUGH GAS FIELD** (ABD) Cont.....

### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	В.&М.	Total depth (feet)	Poo⊩(zone)	Strata & age at total depth
Discovery well	Mariposa Petroleum Co. "Russell" 2	Same as present	9 8N 1E	MD	5,543 <mark>ª</mark> /	McCune	
Deepest well	Cities Service Co. "Reardon A" 1	Same as present	3 8N 1E	MD	8,301		Forbes Late Cretaceous

			POOL DATA			
ITEM	MCCUNE					FIELD OR AREA DATA
Discovery date	February 1978	. '				
Gas (Mct/day)	2,575 1,775 1/4					
pressure (psi)	2,140 118-124 980-1,200					
Formation	Winters Late Cretaceous 5,030-5,350 10-20				·	
area (acres)			<u> </u>			180
		RE	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	26-30 † 35-40 †				`	
Permeability to air (md)	60–65 †				· · · · · · · · · · · · · · · · · · ·	
		RE	SERVOIR FLUID PROPERT	TIES	r	<b></b>
Oil: Oil gravity ("API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.624 859					
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)						
		ENI	  ANCED RECOVERY PROJ	ECTS	<u> </u>	
				<u> </u>		
Enhanced recovery projects  Date started  Date discontinued				. *		
Peak oil production (bbl) Year						250 /55
Peak gas production, net (Mcf) Year						258,455 1979

Base of fresh water (ft.): 2,400-2,700

Remarks: Commercial gas deliveries began in January 1979. The West Area was abandoned in July 1980, and the East Area was abandoned in November 1981.

Cumulative production for the field is 268,571 Mcf

a/ Directional well, true vertical depth is 5,398 feet.

# DRY SLOUGH GAS FIELD EAST AREA (ABD)

### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec. Y. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Cities Service Co. "Beoshanz A" 1	Same as present	2 8N 1E	MD	6,480	Winters	
Deepest well	Cities Service Co. "Reardon A" 1	Same as present	3 8N 1E	MD	8,301		Forbes Late Cretaceous

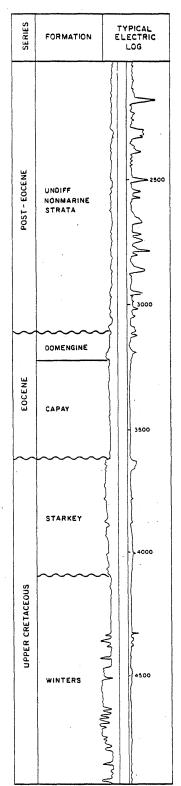
			POOL DATA	,		
ITEM	WINTERS					FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	August 1978	`				
Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir	2,340 1,000 10/64					
pressure (psi)	2,619 140 940-1,200					
Formation	Winters Late Cretaceous 6,040 15					
Average net thickness (ft.) Maximum productive area (acres)	40					
		RE	SERVOIR ROCK PROPERT	TIES	<u> </u>	
Porosity (%)	24-27 † 45-50 † 50-55 †				:	,
Permeability to air (md)		· RE	SERVOIR FLUID PROPERT	ries		
Oil: Oil gravity ('API)						Z.
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.586 976		·			
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)			·			
		ENH	ANCED RECOVERY PROJ	ECTS		
Enhanced recovery projects Date started Date discontinued						
•						
Peak oil production (bbi)			****			
YearPeak gas production, net (Mcf) Year	10,116 1980					

Base of fresh water (ft.): 2,400-2,700

Remarks: The East Area was abandoned in November 1981. Cumulative production for the East Area is 10,116 Mcf.

### DRY SLOUGH GAS FIELD WEST AREA (ABD)

### **DISCOVERY WELL AND DEEPEST WELL**


	Present o	operator and well designation	Original o	perator and well designati	on Sec. T. &	R. B.&A	Total depth (feet)	Pool (zone	Strata & age ) at total depth
Discovery welf. Deepest well		troleum Co. "Russell" 2 troleum Co. "Russell" 3	Same as pre	**	9 8N 1E		5,543 ^a / 6,463 ^b /	McCune	Winters Late Cretaceo
				POOL DATA					
ITE	М	MCCUNE					,		FIELD OR AREA DATA
Discovery date Initial production Oil (bb/day) Gas (Mcf/day) Flow pressure Bean size (in.) Initial reservoir pressure (psi) Reservoir tempera Initial oil content Initial gas content Formation	(psi)	2,575 1,775 1,74 2,140 118-124 980-1,200 Winters Late Crataceous 5,030-5,350 10-20		·					
			Ri	SERVOIR ROCK PROPERT	TIES				
Porosity (%) Soj (%) Swj (%) Sgj (%) Permeability to air	***************************************	26-30 † 35-40 † 60-65 †							
	·		RI	SERVOIR FLUID PROPERT	NES				
Oil: Oil gravity (*AP Sulfur content ( Initial solution GOR (SCF/S Initial oil FVF ( Bubble point pr Viscosity (cp) @ Gas:	% by wt.) TB) RB/STB) ess. (psia)								
Specific gravity Heating value ( Water:	Btu/cu. ft.)	.624 859				•			
Salinity, NaCl ( T.D.S. (ppm) R _W (ohm/m) (	***************************************								
			ENI	ANCED RECOVERY PROJ	ECTS				
Enhanced recover Date started Date discontinu									4
			,						
	-								

Peak oil production (bbl)
Year
Peak gas production, net (Mcf)
Year

Remarks: The West Area was abandoned in July 1980. Cumulative production for the West Area is 258,455 Mcf.

a/ Directional well, true vertical depth is 5,398 feet.
b/ Directional well, true vertical depth is 6,095 feet.

258,455 1979

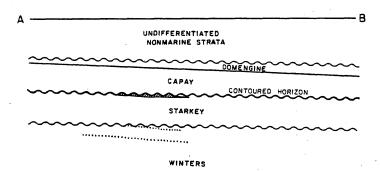


TIIN RIE

28

3700

27


3800

27

3800

34

CONTOURS ON BASE OF CAPAY



DECEMBER 1980

## **DUFOUR GAS FIELD**

### **DISCOVERY WELL AND DEEPEST WELL**

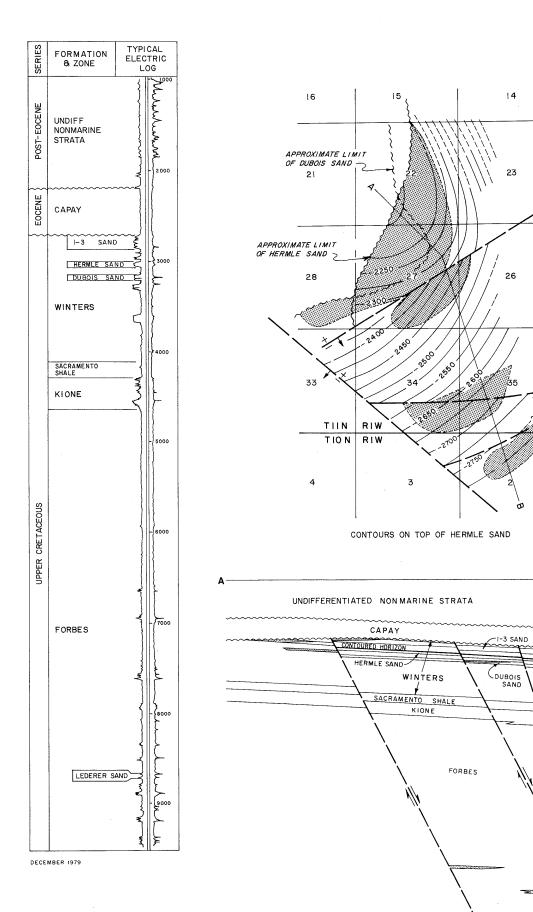
	Present operator and well designation	Original operator and well designation	Sec. T. & R	В.&М	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	ARCO Oil and Gas Co. "Dufour" 1	Atlantic Richfield Co. "Dufour" 1	28 11N 1F	MD	5,118	Starkey	Sacramento shale Late Cretaceous
Deepest well	Same as above	11	"	"	"	11	11

			POOL DATA								
ITEM	STARKEY	:				FIELD OR AREA DATA					
Discovery date	January 1974 - 3,615 1,475	January 1974 1709 459									
Bean size (in.)	1/2 1,880 101 960-1,200 Starkey	1/4  2181 112  1015-1103  Winters									
Formation	Late Cretaceous 3,700 30	Late Cretaceous 4400 10				80					
		RE	SERVOIR ROCK PROPERT	TIES							
Porosity (%)	28-32*** 40-45*** 55-60***	25-29*** 37-42*** 58-63***									
	RESERVOIR FLUID PROPERTIES										
Oil: Oil gravity (*API)				·							
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.577 968	- -									
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)											
100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to		ENF	IANCED RECOVERY PRO	JECTS	<u> </u>						
Enhanced recovery projects Date started Date discontinued											
	,										
Peak oil production (bbl) YearPeak gas production, net (Mcf) Year						605 <b>,</b> 613 1979					

Base of fresh water (ft.): 2,100

Remarks: Commercial gas deliveries began in December 1978.

### DUNNIGAN HILLS GAS FIELD


(Abandoned)

13

24

25

В



### **DUNNIGAN HILLS GAS FIELD** (ABD)

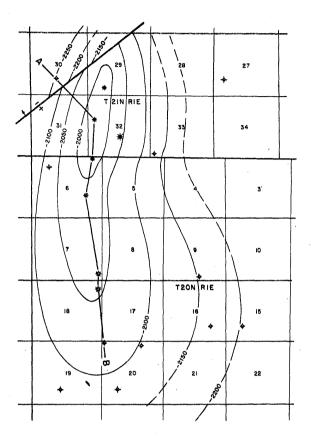
#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec. T. & R	B.&N	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Texaco Inc. "Dunnigan Unit One" 1	The Texas Co. "Hermle" 1	22 11N 1	MD	4,022	Hermle & Dubois	,
Deepest well	Hunnicutt & Camp Drilling Co. "A. M. Richie" 1	Standard Oil Company of Calif. "A. M. Richie" 1	36 11N 1	MD	9,500		Forbes Late Cretaceous

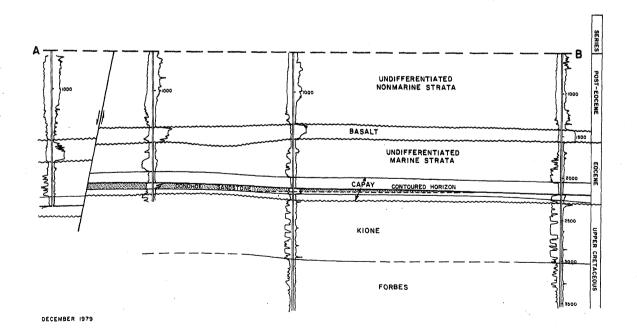
POO	_	A 7	T A

			POOL DATA				
ITEM	1-3	HERMLE	DUBOIS	LEDERER		FIELD OR AREA DATA	
Discovery date	August 1947	February 1946	February 1946	May 1960			
Initial production rates							
Oil (bbl/day)Gas (Mcf/day)	5,000 a/	3,030 b/	3,030 b/	2,250 c/			
Flow pressure (psi)	3,000 _	926	926	950			
Bean size (in.)	28/64	3/8	3/8	5/16			
nitial reservoir	1 040	1,060	1.080	5,005			
pressure (psi)	1,040 103	1,060	1,000	155			
leservoir temperature (°F) nitial oil content (STB/acft.)	100	1	200				
nitial gas content (MSCF/acft.).	720-920	730-940	730-940	900-1,400			
ormation	Winters	Winters	Winters	Forbes Late Cretaceous			
eologic age	Late Cretaceous	Late Cretaceous 2,465	Late Cretaceous 2,650	8,400			
verage depth (ft.)verage net thickness (ft.)	2,450	65	30	15			
Maximum productive	,,,	1					
area (acres)			-			1,300	
						1	
	· · · · · · · · · · · · · · · · · · ·	<u></u>	RESERVOIR ROCK PROPE	RTIES	T	T	
orosity (%)	34-38	34-38	34-38	16-25†	,		
oj (%)	25-35	25-35	25-35	55†			
wi (%) Si (%)	65-75	65-75	65-75	45†			
ermeability to air (md)	300-1,700						
, , ,	<u> </u>	<u>. l</u>			<u> </u>		
		:	RESERVOIR FLUID PROPE	RTIES	<del></del>	T	
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F							
Gas: Specific gravity (air = 1.0)	.577††	.577††	.577††	.555††			
Heating value (Btu/cu. ft.)		970	970	1,035			
Water:							
Salinity, NaCl (ppm)	5,500	5,800	8,200		1	1	
T.D.S. (ppm)				Į.		t	
B (abov () (7738F)	1						
R _W (ohm/m) (77°F)							
R _W (ohm/m) (77°F)		El	NHANCED RECOVERY PRO	OJECTS			
R _W (ohm/m) (77°F)		EF	NHANCED RECOVERY PRO	OJECTS			
R _w (ohm/m) (77*F) Enhanced recovery projects Date started		EI	NHANCED RECOVERY PRO	OJECTS			
R _W (ohm/m) (77°F)		EI	NHANCED RECOVERY PRI	OJECTS			
R _W (ohm/m) (77°F) Enhanced recovery projects Date started		EI	NHANCED RECOVERY PR	OJECTS			
R _w (ohm/m) (77°F) Enhanced recovery projects Date started		E	NHANCED RECOVERY PR	OJECTS			
R _W (ohm/m) (77°F) Enhanced recovery projects Date started		EI	NHANCED RECOVERY PR	OJECTS			
R _w (ohm/m) (77°F) Enhanced recovery projects Date started		EI	NHANCED RECOVERY PR	OJECTS			
R _w (ohm/m) (77*F) Enhanced recovery projects Date started		EI	NHANCED RECOVERY PRI	OJECTS			
R _W (ohm/m) (77*F) Enhanced recovery projects Date started		E	NHANCED RECOVERY PR	OJECTS			
R _W (ohm/m) (77*F) Enhanced recovery projects Date started		EI	NHANCED RECOVERY PR	OJECTS			
R _w (ohm/m) (77*F) Enhanced recovery projects Date started		Ei	NHANCED RECOVERY PR	OJECTS			
R _W (ohm/m) (77*F)  Enhanced recovery projects  Date started		EI	NHANCED RECOVERY PR	OJECTS			
Rw(ohm/m) (77*F)		E	NHANCED RECOVERY PR	OJECTS			
R _W (ohm/m) (77*F)  Enhanced recovery projects  Date started		EI	NHANCED RECOVERY PR	OJECTS		1,441,810 1952	

Base of fresh water (ft.): 1,750


Remarks: Commercial gas deliveries began in January 1950. The field was abandoned in December 1977. Seventeen wells were completed and cumulative production was 10,373,228 Mcf of gas and 808 barrels of condensation.

a/ Formation test in August 1947. First commercial production from this zone: The Texas Co. (now Texaco Inc.) "Dunnigan Unit One" 6, Sec. 27, T. 11N., R. 1W., completed in September 1950; initial daily production: 1,500 Mcf, flow pressure 960 psi, 1/4-inch bean.


b/ Production from Hermle and Dubois zones commingled.

Twenty barrels of condensate was also produced.

Selected References: Corwin, C. H., 1951, Dunnigan Hills Gas Field: Calif. Div. of Oil and Gas, Summary of Operations - Calif. Oil Fields, Vol. 37, No. 2.

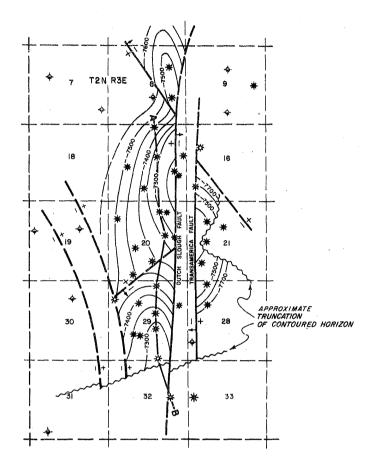


CONTOURS ON TOP OF DONOHOE SANDSTONE

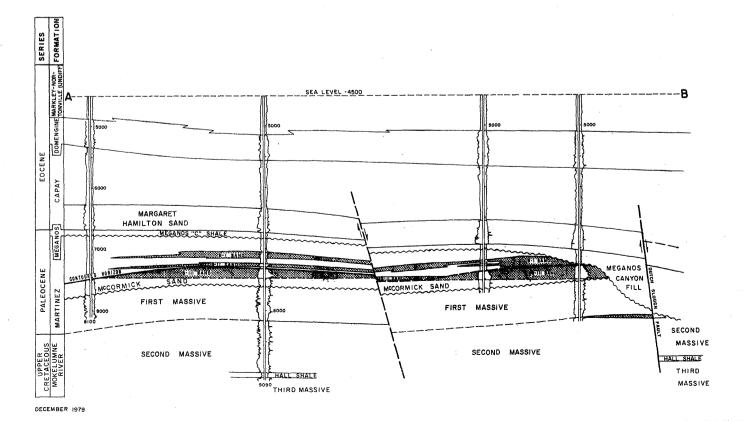


### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "Donohue Fee" 1	Standard Oil Co. of Calif. "Donohue Fee" 1	6 20N 1E	MD	6,000	Donohue	Guinda Late Cretaceous
Deepest well	Same as above	. H	11	11	"	"	"


			<b>POOL DATA</b>			
ITEM	DONOHOE					FIELD OR AREA DATA
Discovery date	July 1946					
Initial production rates	•					
Oil (bbl/day) Gas (Mcf/day)	10,937					
Flow pressure (psi)	824					
Bean size (in.)	7/8					
Initial reservoir						
pressure (psi) Reservoir temperature (°F)	970 94		<u>'</u>	'	j	
Initial oil content (STB/acft.)	34			·		
Initial gas content (MSCF/acft.).	510		1 .			
Formation	Capay					
Geologic age Average depth (ft.)	Eocene 2,130					
Average net thickness (ft.)	35					
Maximum productive					· ·	-
area (acres)	1,790		1			
		Ri	ESERVOIR ROCK PROPERT	TIES		
	25*					,
Porosity (%) Soj (%)	45*		1		1	
Swi (%)	30*			-		
Sg; (%)	70*		1			
Permeability to air (md)		· ·				
		RI	ESERVOIR FLUID PROPER	TIES	4	I
					T	
Oil: Oil gravity (*API)					1	
Sulfur content (% by wt.)						
initial solution						
GOR (SCF/STB)			·		1	
Initial oil FVF (RB/STB)						
Bubble point press. (psia) Viscosity (cp) @ °F	*					
Gas:	.678					
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	711					
richiang variate (Dea) ed. 111) minin						
Water:						
Salinity, NaCl (ppm)	22,600					
T.D.S. (ppm) R _W (ohm/m) (77°F)			1		1	
KW (OIRI) (77 F)			<u> </u>		<u> </u>	<u> </u>
	-	ENI	HANCED RECOVERY PRO	JECTS		·
Enhanced recovery projects						
Date started					1	
Date discontinued						
*						
İ						
*.		,			1	
					1	
					1	
	,					
Peak oil production (bbl)						
YearPeak gas production, net (Mcf)	1,703,625	1				1
Year	1972			1		
	L	<u> </u>	<u> </u>	L	L	L

Base of fresh water (ft.): 1,150


Remarks: Commercial gas deliveries began in October 1949. Btu value of gas is low due to high nitrogen content.

Selected References: Weddle, J. R., 1962, Durham Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 2.

## DUTCH SLOUGH GAS FIELD



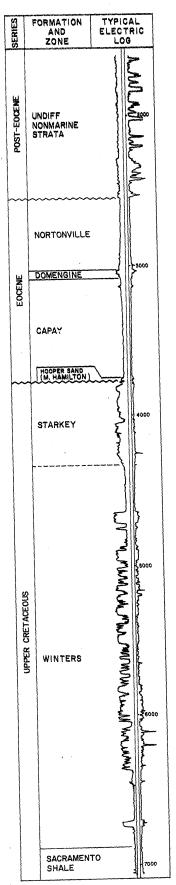
CONTOURS ON TOP OF MCCORMICK SAND

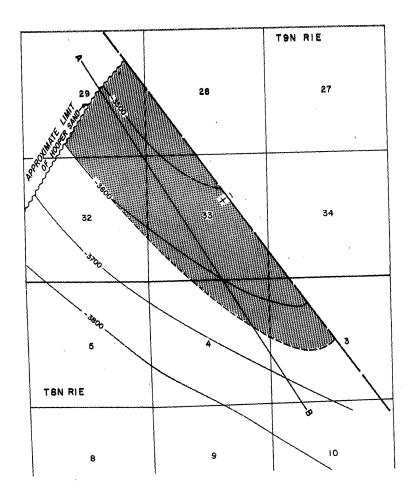


### **DUTCH SLOUGH GAS FIELD**

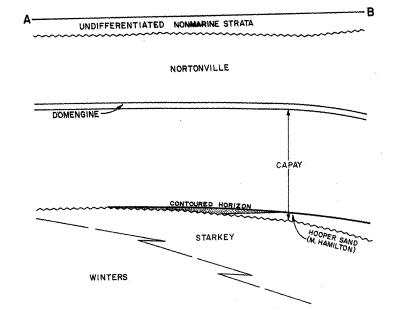
## DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R	в.&м	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Aminoil USA, Inc., Unit Oper. "Tract	Signal Oil and Gas Co. "Signal-Burroughs"	20 2N 31	MD	7,600	Anderson	
Deepest well		Union Oil Company of Calif. "U.S.GDelta Properties" 7	17 2N 3I	MD	13,000		Winters Late Cretaceous


			POOL DATA			_
ITEM	ANDERSON	B-I	B-II	B-III	SECOND MASSIVE	FIELD OR AREA DATA
Discovery date	March 1964	March 1964	March 1964	October 1963	October 1963	
Initial production rates	[					
Oil (bbl/day)	3,470	2,415	4,730	9,700	1,280	
Flow pressure (psi)	1,205	2,260	2,191	2,200	1,435	
Bean size (in.)	21/64	14/64	18/64	26/64	12/64	
Initial reservoir	7 161	7 057	7 201	7 717	7 505	
pressure (psi)	3,161 163	3,257 166	3,281 167	3,317 169	3,505	1
Reservoir temperature (°F)	103	100	107	100	101	
Initial gas content (MSCF/acft.).	1,600	1,600	1,600	1,300-1,400		•
Formation	Martinez	Martinez	Martinez	Martinez	Mokelumne River	
Geologic age	Paleocene	Paleocene	Paleocene	Paleocene	Late Cretaceous	
Average depth (ft.)	7,000 50	7,200 50	7,300 50	7,400 95	8,100 15	
Average net thickness (ft.)	30	30	30	1	13	
area (acres)						2,360
					<u> </u>	1
		RE	SERVOIR ROCK PROPER	TIES	T	T
Porosity (%)	28	27	27	26		
Swi (%)	33	33	33	40-45		
Sg; (%)	67	67	67	55-60	1	
Permeability to air (md)	-	195	195	34		
-		RF	SERVOIR FLUID PROPER	TIES		<u> </u>
				T	T	T
Oil:				]	1	
Oil gravity (°API)						
Sulfur content (% by wt.) Initial solution				1		ł
GOR (SCF/STB)				1		
Initial oil FVF (RB/STB)				1.	İ	
Bubble point press. (psia)				}	1	
Viscosity (cp) @ °F						
Gas: Specific gravity (air = 1.0)	.591	.591	.597	,603	.591	
Heating value (Btu/cu. ft.)	1,060	1,060	1,065	1,070	1,060	
Water:						1
Salinity, NaCl (ppm)	-	325	428	4,622	1,301	
T.D.S. (ppm)	100					
R _W (ohm/m) (77°F)				<u> </u>		<u> </u>
		ENH	ANCED RECOVERY PRO	JECTS		·
Enhanced recovery projects				·		
Date started				1 .		
Date discontinued						
	· ·			1	1	
}				1	1	
. [		-				
1		'				
1						
1						
						1
Peak oil production (bbl)	,					
					* .	
Peak oil production (bbl) YearPeak gas production, net (Mcf)	·					23,170,081 1966


Base of fresh water (ft.): 800

Remarks


Selected References: Hunter, W. J., 1964, Dutch Slough Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 50, No. 2.

# FAIRFIELD KNOLLS GAS FIELD





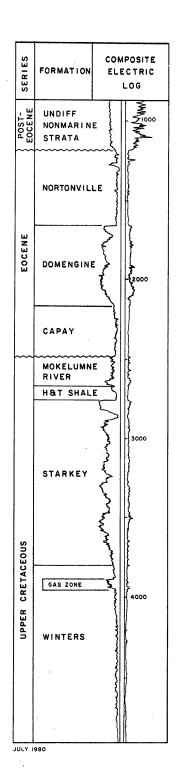
CONTOURS ON TOP OF HOOPER (MARGARET HAMILTON) SAND

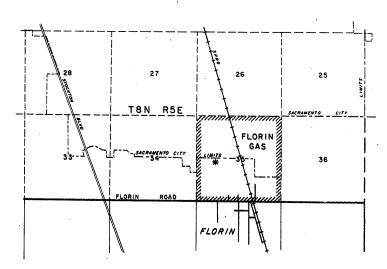


DECEMBER 1979

### **FAIRFIELD KNOLLS GAS FIELD**

### DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. 8	ĸR.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "E.E. Hooper" 1	Standard Oil Company of California	32 9N	1E	MD	5,181	Hooper	
Deepest well	Supreme Oil & Gas Corp. "Corcoran" 1	Franco Western Oil Co. "Corcoran" 33-4	33 9N	1E	MD	7,069		Sacramento shale Late Cretaceous


			POOL DATA			
ITEM	HOOPER	UNNAMED				FIELD OR AREA DATA
Discovery date	November 1937  13,000 720 1/2  1,610 108  1,000 Capay Eocene 3,625 25	April 1964  2,930 1,900 1/4  2,280 124  1,100-1,300 Winters Late Cretaceous 5,040 5				
area (acres)			·			400
	u	RI	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	30** 30** 70**	26-30† 35-40*** 60-65***				
		RI	SERVOIR FLUID PROPERT	TIES		
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	-	880-930				
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _w (ohm/m) (77°F)	670	840				
		EN	I HANCED RECOVERY PROJ	ECTS	L	
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						357,826 1951

Base of fresh water (ft.): 2,500

Remarks: Formerly known as Plainfield Ridge Gas field. Commercial gas deliveries began in September 1943. The field was abandoned in 1954 and was reactivated in April 1964 when the deeper zone was discovered.

Selected References: Kirby, J. M., 1943, Fairfield Knolls Gas Field in Geologic Formations and Economic Development of the Oil and Gas Fields of Calif.: Calif. Div. of Mines Bull. 118, p. 599-600.



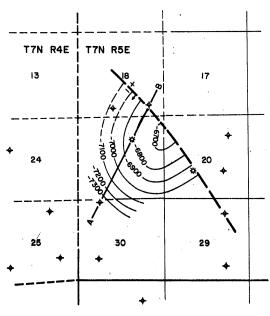


SUBSURFACE DATA NOT AVAILABLE

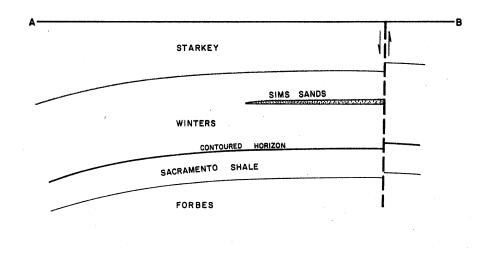
COUNTY: SACRAMENTO FLORIN GAS FIELD

### DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation	Original operator and well designation	Sec	. T. é	& R.	8,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
D	iscovery well	Union Oil Company of California "Florin" 1	Same as present	35	8N	5E	MD	4,921 a/	Winters	Winters Late Cretaceous
D	eepest well	Same as above	"		"		"	"	11	"


POOL DATA							
ITEM	WINTERS					FIELD OR Area data	
Discovery date	December 1977						
Flow pressure (psi)	2,326 1,102	•					
Reservoir temperature (°F)	94 890-1,000						
Formation	Winters Late Cretaceous 3,800 30						
area (acres)	40	RE	SERVOIR ROCK PROPERT	TIES	,		
Porosity (%)	29-33 30-35*** 65-70*** 10-27		ì				
,							
Oil: Oil gravity (*API)							
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.598 904						
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)			·				
		ENH	I IANCED RECOVERY PROJ	ECTS			
Enhanced recovery projects Date started Date discontinued							
		* :	•				
		,					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year							

Base of fresh water (ft.): 1,300


**Remarks:** The gas is being purchased by a nearby manufacturing plant. Commercial gas deliveries began in July 1980. a/ Directional well, true vertical depth is 4,807 feet.

# FREEPORT GAS FIELD

FORMATION AND ZONE	TYPICAL ELECTRIC LOG
UNDIFF NONMARINE STRATA	- 1000
UNDIFF MARINE STRATA	- H
MOKELUMNE RIVER H & T SHALE	3000
STARKEY	4000
SIMS SDS	- {6000
SACRAMENTO	7000
FORBES 8 OLDER	- 8000
	UNDIFF NONMARINE STRATA  UNDIFF MARINE STRATA  CAPAY  MOKELUMNE RIVER  H & T SHALE  STARKEY  STARKEY  STARKEY  FORBES & OLDER



CONTOURS ON TOP OF SACRAMENTO SHALE

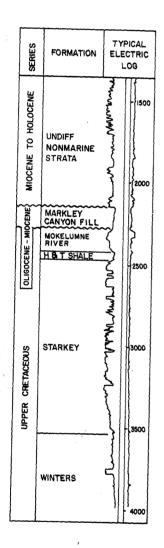


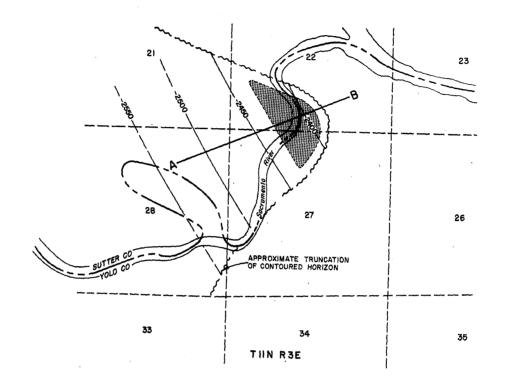
COUNTY: SACRAMENTO

### FREEPORT GAS FIELD

### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T	. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "Sims Community" 1	Standard Oil Company of California "Sims	19 7	N 5E	MD	7,000	Sims	
Deepest well	Chevron U.S.A. Inc. "Sims Community" 2	Community" 1 Standard Oil Co. of Calif. "Sims Community" 2	18 7	N 5E	MD	9,419		basement pre-Lt. Cret.


			POOL DATA						
ITEM	SIMS	UNNAMED				FIELD OR AREA DATA			
Discovery date	May 1952 9,784 1,582 1/2	May 1962 17,300 1,000			,				
pressure (psi)  Reservoir temperature ("F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	2,710 124 1,500-1,800 Winters Late Cretaceous 5,780 20	3,600 126 1,300 Forbes Late Cretaceous 8,040 50							
	RESERVOIR ROCK PROPERTIES								
Porosity (%)	28-32 † 30-35 † 65-70 †	22* 40* 60*							
	RESERVOIR FLUID PROPERTIES								
Oil: Oil gravity (°API)									
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.606†† 910	.670†† 735	,						
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)									
		EN	ANCED RECOVERY PROJ	ECTS					
Enhanced recovery projects Date started Date discontinued									
Peak oil production (bbl) YearPeak gas production, net (Mcf) Year		:				614,927 1953			


Base of fresh water (ft.): 650-1,450

Remarks: Commercial gas deliveries began in January 1953 and ceased in 1976. The field was abandoned in May 1977. The field was reactivated July 1981.

Two wells were completed and cumulative gas production was 2,647,000 Mcf.

# FREMONT LANDING GAS FIELD





CONTOURS ON TOP OF STARKEY

UNDIFFERENTIATED NONMARINE STRATA

CAPAY (EOCENE		EY CANYON F	ILL		~~~~~
MOKELUMNE RIVER H & T SHALE	CONTOURED	HORIZON			The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa
	STARKEY			:	and a second
	WINTERS				- A

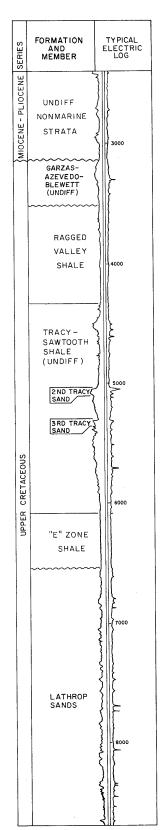
DECEMBER 1979

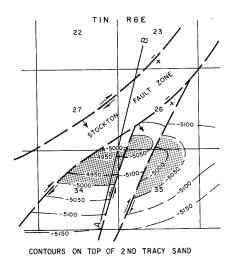
### FREMONT LANDING GAS FIELD

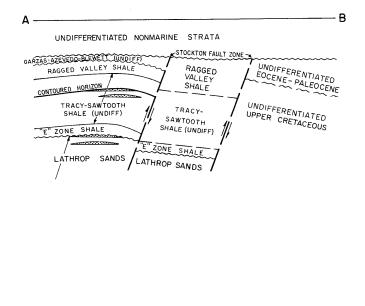
COUNTY: YOLO and SUTTER

### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Centura, Inc. "Deseret Farms" 2	B. Pete Jackson "Deseret Farms" 2	22 11N 3E	MD	2,603 <u>a</u> /	unnamed	
Deepest well	Centura, Inc. "Deseret Farms" 3	Same as present	27 11N 3E	MD	4,500		Winters Late Cretaceous


#### POOL DATA


POOL DATA									
ITEM	UNNAMED					FIELD OR AREA DATA			
Discovery date Initial production rates Oil (bbl/day)	October 1976								
Gas (Mcf/day)	1,000 900								
pressure (psi)	1,000 121 600-670								
Geologic age	Mokelumne River Late Cretaceous 2,320 25								
Maximum productive area (acres)	40								
		RE	SERVOIR ROCK PROPERT	TIES					
Porosity (%)	32-34† 26-30†								
Sgi (%)	70-74†								
,	RESERVOIR FLUID PROPERTIES								
Oil: Oil gravity (*API)									
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.637†† 820								
Water: Salinity, NaCl (ppm) T.D.S. (ppm)									
(5111), (1) (1)		Į FNI	LIANCED RECOVERY PROJ	FCTS	L				
Enhanced recovery projects Date started Date discontinued									
		-							
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year									
	L	L	L	L	l				


Base of fresh water (ft.): 1,400

Remarks: Commercial gas deliveries have not yet begun.  $\underline{a/} \quad \text{Directional well, true vertical depth is 2,490 feet.}$ 

### FRENCH CAMP GAS FIELD





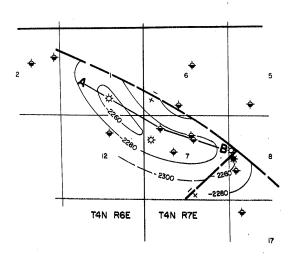


NOVEMBER 1979

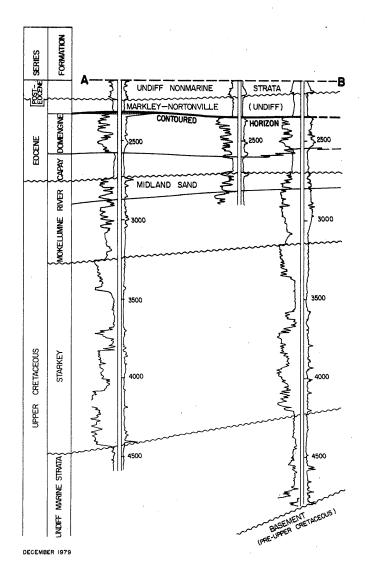
COUNTY: SAN JOAQUIN

### FRENCH CAMP GAS FIELD

### **DISCOVERY WELL AND DEEPEST WELL**


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Laymac Corp. "Reynolds & Carver-West" 1	Ferguson & Bosworth "Reynolds & Carver- West" 1	26 1N 6E	MD	8,750	Tracy	Lathrop sands Late Cretaceous
Deepest well	Same as above		"	"	"	"	"

		<b>1</b>	POOL DATA	Γ		FIELD OR
ITEM	2ND TRACY	3RD TRACY	LATHROP			AREA DATA
Discovery date	March 1967	March 1967 a/	October 1967			
Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir	1,250 1/2	a/ a/ a/	1,300 1/2		·	
pressure (psi)	119	2,420 123 790-1,000	4,990 146 1,200-1,600	٠		
Formation	Tracy-Sawtooth Shale Late Cretaceous 5,000	Tracy-Sawtooth Shale Late Cretaceous 5,308 17	Lathrop sands Late Cretaceous 6,925 45			·
area (acres)						400
		RE	SERVOIR ROCK PROPERT	ries		
Porosity (%)		20-24 †	18-22***			
Swj (%)	60-65 †	40-45 † 55-60 †	40-45*** 55-60***			*
· · · · · · · · · · · · · · · · · · ·		RE	SERVOIR FLUID PROPERT	TIES		
Oil: Oil gravity (*API)	ľ					
Viscosity (cp) @ *F						
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water:	.666 760	.666 770	.639 † † 830			
Vater: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)		14,000	24,100			
		ENH	IANCED RECOVERY PROJ	ECTS		
Enhanced recovery projects Date started Date discontinued					·	
			·			
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						2,101,502 1970


Base of fresh water (ft.): 100

Remarks: Commercial gas deliveries began in October 1969.

a/ Commingled production from the 2nd and 3rd Tracy zones.

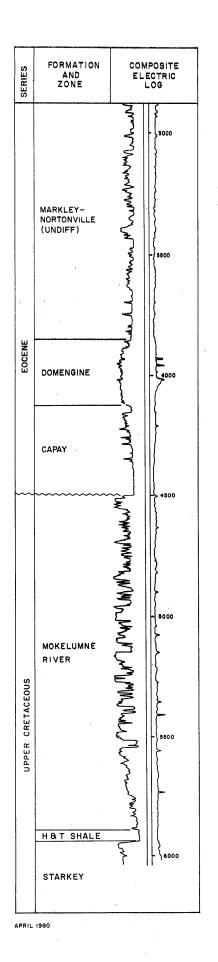


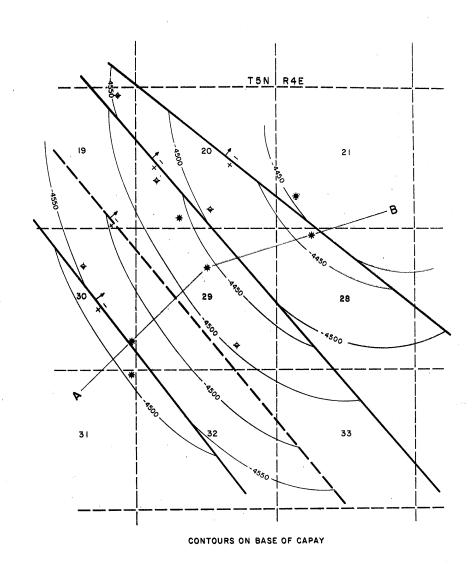
CONTOURS ON TOP OF DOMENGINE

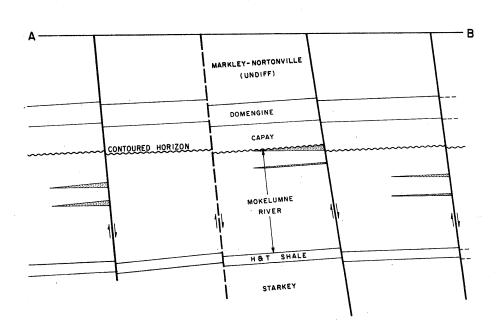


# DISCOVERY WELL AND DEEPEST WELL

_	,	Present operator and well designation	Original operator and well designation	Sec. T. &	& R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
	Discovery well	Amerada Hess Corp., Opr. "Community"	Bankline Oil Co. "Community" 1-1	1 4N	6E	MD	5,765	Domengine	basement (gneiss)
١	Deepest well	Same as above	"	"		"	"	' "	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,


	POOL DATA							
ITEM	DOMENGINE	UNNAMED				FIELD OR AREA DATA		
Discovery date Initial production rates Oil (bbl/day)	April 1943	November 1970			-			
Gas (Mcf/day)	7,765 692 3/4	1,295 926 1/4						
pressure (psi)	1,004 96 560-670	936 97 330						
Formation	Domengine Eocene 2,330	Domengine Eocene 2,433 5						
Maximum productive area (acres)	15	5				140		
			RESERVOIR ROCK PROPERT	ries		<b>,</b> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Porosity (%)	25-30 25	20	-					
Sg; (%) Permeability to air (md)	75 15-70	60						
		<u> </u>	RESERVOIR FLUID PROPERT	TIES	L			
Oil: Oil gravity (°API)			·					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.690 680	.666 752						
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	3,938							
		EN	HANCED RECOVERY PROJ	IECTS		<u> </u>		
Enhanced recovery projects Date started Date discontinued				-				
		· ·				·		
					·	·		
		:						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year			·			261,063 1956		


Base of fresh water (ft.): 1,850


Remarks: Commercial gas deliveries began in October 1946.

Selected References: Huey, W. F., 1957, Galt Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 43, No. 1.

## GRAND ISLAND GAS FIELD





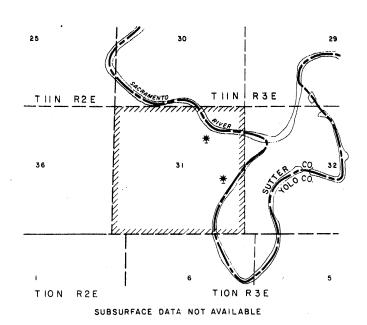


COUNTY: SACRAMENTO

## **GRAND ISLAND GAS FIELD**

### **DISCOVERY WELL AND DEEPEST WELL**

-		Present operator and well designation	Original operator and well designation	Sec.	T. & R	B.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
l	Discovery well	Nahama & Weagant, Inc. "Garin GU" 1	Amerada Petroleum Corp. "Garin Gas Unit" 1	29	5N 4	MD	6,565	unnamed	
	Deepest well	Atlantic Oil Co. "Gemignani" 2	Same as present	31	5N 41	E MD	8,950		Winters Late Cretaceous


, e e			POOL DATA	1		
ITEM	UNNAMED	UNNAMED				FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	August 1960	November 1960				
Gas (Mcf/day) Flow pressure (psi)	2,780 1,730	1,300 1,850				
Bean size (in.)	1/4	3/16				
pressure (psi)	2,010	2,200	1.0			
leservoir temperature (°F) nitial oil content (STB/acft.)	105	110				
nitial gas content (MSCF/acft.).	1,100-1,400 Mokelumne River	1,200-1,500 Mokelumne River				
eologic age	Late Cretaceous	Late Cretaceous				
verage depth (ft.)verage net thickness (ft.)	4,672 5	5,071 5				
laximum productive area (acres)				*		460
			CERVOIR ROCK PROPERTY	<u> </u>		
•	28-32 †		SERVOIR ROCK PROPERT	IES		
orosity (%)		28-32†				
wi (%)	35-40 † 60-65 †	35-40 † 60-65 †				
ermeability to air (md)						
		RE	SERVOIR FLUID PROPERT	ries -		
il:						
Oil gravity (°API)			,			
Initial solution GOR (SCF/STB)						
Initial oil FVF (RB/STB)		1				
Bubble point press. (psia) Viscosity (cp) @ °F						
as:				,		
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.570†† 975	.570†† 975				
/ater:					,	
Salinity, NaCl (nnm)	9,900	16,700				
T.D.S. (ppm) R _W (ohm/m) (77°F)			4			
	- · · · · · · · · · · · · · · · · · · ·	ENH	ANCED RECOVERY PROJE	ECTS		
nhanced recovery projects						
Date started						
Date discontinued						
		1			,	
eak oil production (bbl)						
Yeareak gas production, net (Mcf)					.*	380,078
Year		1				1976

Base of fresh water (ft.): 2,000

Remarks: Commercial production began in June 1976.

SERIES	FORMATION	TYPICAL ELECTRIC LOG
POST - EOCENE	UNDIFF NONMARINE STRATA	2000
EOCENE	DOMENGINE	The Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Co
ΕO	CAPAY	
وهاد وها	MOKELUMNE RIVER HBI SHALE	3000
,	STARKEY	4000
CRETACEOUS		
UPPER	WINTERS	
	SACRAMENTO SHALE	5000
	KIONE	

DECEMBER 1980

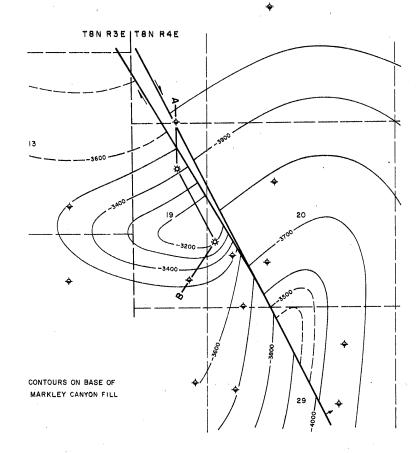


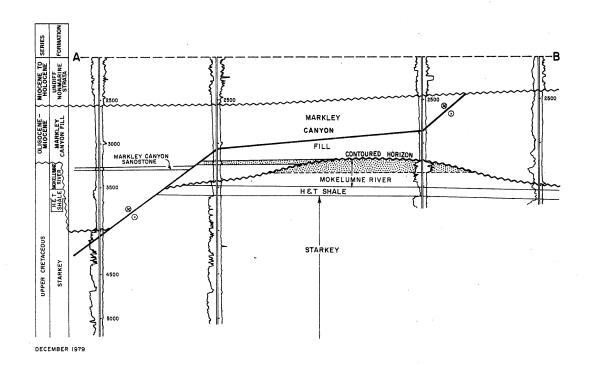
### **GRAYS BEND GAS FIELD**

### **DISCOVERY WELL AND DEEPEST WELL**

*	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Hilliard Oil & Gas, Inc. "Hershey A" 1	Same as present	31 11N 2E	MD	<u>a</u> /	unnamed	Winters Late Cretaceous
Deepest well	Same as above		"	"	11	tt .	"

POOL DATA										
ITEM	UNNAMED				·	FIELD OR AREA DATA				
Discovery date	January 1980  Confidential Confidential Confidential  1,969 105  740-1,025 Winters Late Cretaceous 4,500 20									
		RE	SERVOIR ROCK PROPERT	FIES						
Porosity (%)	22-28*** 40-45*** 55-60***									
		RE	SERVOIR FLUID PROPERT	TIES						
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCE/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F										
Gas:   Specific gravity (air = 1.0)   Heating value (Btu/cu. ft.)   Water:   Salinity, NaCl (ppm)   T.D.S. (ppm)   R _W (ohm/m) (77°F)	.626 842		, ev .			e e				
		ENI	IANCED RECOVERY PRO	JECTS						
Enhanced recovery projects Date started Date discontinued		:								
		•								
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year			·							


Base of fresh water (ft.): 1,400


Remarks: Commercial gas deliveries have not yet begun.

a/ Confidential.

# GREENS LAKE GAS FIELD

(Abandoned)





COUNTY: YOLO

### **GREENS LAKE GAS FIELD** (ABD)

# DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
ı	Discovery well	Nahama & Weagant, Inc. "Greens Lake	The Superior Oil Co. "Greens Lake	19 8N 4E	MD	5,062	Markley Canyon	
	Deepest well	Unit 1" 1 Nahama & Weagant, Inc. "Greens Lake Unit 1" 2	Unit" 1-1 The Superior Oil Co. "Greens Lake Unit" 1-2	18 8N 4E	MD	5,200	fill	Starkey Late Cretaceous

POOL DATA						
ITEM	MARKLEY CANYON FILL	MOKELUMNE RIVER				FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in)	June 1969 1,097 760 1/4	April 1970 6,959 1,202 1/2				
pressure (psi)  Reservoir temperature (°F)  Initial oil content (STB/acft.)  Initial gas content (MSCF/acft.)  Formation  Geologic age  Average depth (ft.)  Average net thickness (ft.)  Maximum productive  area (acres)	850 Markley Canyon fill Oligocene-Miocene 3,200 40	1,460 120 620 Mokelumme River Late Cretaceous 3,200 110				220
		Ri	ESERVOIR ROCK PROPERT	ries		
Porosity (%)	35 65	25 45 55				
		RI	ESERVOIR FLUID PROPERT	TIES		
Oil: Oil gravity (*API)				,		
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.628 820	.624 840				
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	1					
		EN	ANCED RECOVERY PROJ	ECTS		
Enhanced recovery projects Date started Date discontinued		:				
					,	
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						215,130 1973

Base of fresh water (ft.): 2,000

Commercial gas production began in 1973. The field was abandoned in 1976. Two wells were completed and cumulative gas production was 337,669 Mcf.

Selected References: Curtin, R. F., 1972, Greens Lake Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 58, No. 1.

# **GREENWOOD GAS FIELD**



COUNTY: GLENN

# **GREENWOOD GAS FIELD**

# DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T.	& R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Energy Production and Sales Co.	Same as present	35 22N	3W	MD	3,150	Eocene	
Deepest well	"Livingston" 1 Union Oil Company of California "UTGM Orland" A-1	Same as present	35 22N	3W	MD	6,137		Guinda Late Cretaceous

			POOL DATA			
ITEM	EOCENE					FIELD OR AREA DATA
Discovery date	August 1977 150 410 1/8			,		
Bean size (in.)	600 96 380					
Formation	Princeton Cyn. fill Eocene 1,460 10					
		RE	SERVOIR ROCK PROPERT	ries		
Porosity (%)	30* 30* 70*					
		RE	SERVOIR FLUID PROPERT	ries		
Oil: Oil gravity ("API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.559 1,005			,		
Water: Salinity, NaCl (ppm)		·		·		
	ļ	ENH	HANCED RECOVERY PROJ	ECTS	<del></del>	
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	31,368 1980					

Base of fresh water (ft.): 920

Remarks: Commercial gas production began in 1979.

# SOUTH GREENWOOD GAS FIELD

		No. of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
SERIES	FORMATION	TYPICAL ELECTRIC LOG
POST - EOCENE	UNDIFF NONMARINE STRATA	2000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10
EOCENE	- GAS SANDS PRINCETON CANYON FILL	2000
	KIONE	كالمالم المرسم المسالمة
UPPER CRETACEOUS	FORBES	3000
d U		More more of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Marketine of the Market

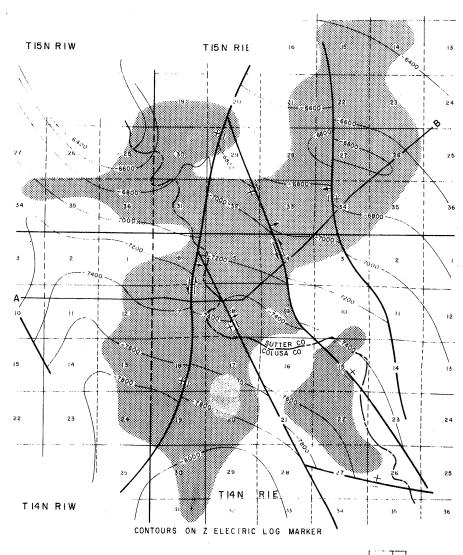
PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF TH		. 1
10	+ II	12     .
÷ 15	14 * * *	13
22	❖	<b>.</b> 24
T2IN	R 3 W	

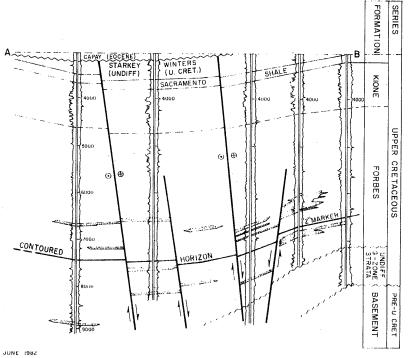
SUBSURFACE DATA NOT AVAILABLE

COUNTY: GLENN

# GREENWOOD, SOUTH, GAS FIELD

#### **DISCOVERY WELL AND DEEPEST WELL**


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Energy Production and Sales Co. "Rehse"	Same as present	14 21N 3W	MD	3,000	Eocene	
Deepest well	Shell Oil Co. "Rehse et al" 1-14	Same as present	14 21N 3W	MD	8,346		Guinda Late Cretaceous


# **POOL DATA** FIELD OR AREA DATA ITEM EOCENE Discovery date ...... Initial production rates Oil (bbl/day) ....... Gas (Mcf/day) ...... October 1977 511 586 3/16 639 · 99 390 Princeton Cyn. fill Eocene Average net thickness (ft.) ... Average net chickness (ft.) ... Maximum productive area (acres) ..... 1,410 80 RESERVOIR ROCK PROPERTIES 30* RESERVOIR FLUID PROPERTIES specific gravity (air = 1.0)...... Heating value (Btu/cu. ft.)...... 935 Salinity, NaCl (ppm) ... T.D.S. (ppm) ..... R_w (ohm/m) (77°F) ..... **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects... Date started ...... Date discontinued ... Peak oil production (bbl) Year ...... Peak gas production, net (Mcf) Year ..... 1980

Base of fresh water (ft.): 1,040

Remarks: Commercial gas deliveries began in January 1980.

# GRIMES GAS FIELD

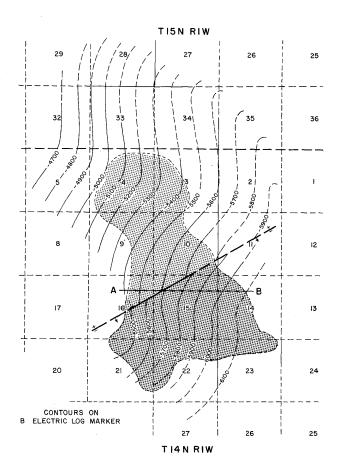


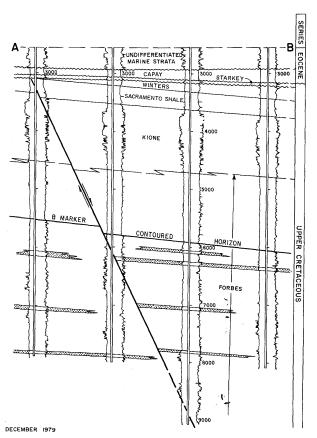


**GRIMES GAS FIELD** 

COUNTY: COLUSA and SUTTER

### **DISCOVERY WELL AND DEEPEST WELL**


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Mobil Oil Corp. "Grimes Operating Unit	Cameron Oil Co. "Cameron-Armstrong" 1	7 14N 2W	- MD	7,528	Forbes	G.,
Deepest well	Buttes Resources Co. "Unit 25" 4	Patrick A. Doheny "Unit 25" 4	26 15N 1W	MD	9,485		Forbes Late Cretaceous


			POOL DATA			
ITEM	FORBES			·		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/ac-ft.) Initial as content (MSCF/acft.) Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	January 1960  2,820 1,040 3/8  2,780-6,000 152-164  1,600-2,100 Forbes Late Cretaceous 4,900-8,800 5-50  14,990					
		RE	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	25-30 35-40 60-65 15-70					
		RE	SERVOIR FLUID PROPERT	TIES		
Oil: Oil gravity (°API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.56 1,007					
Water: Salinity, NaCl (ppm)	13,688 16,823 0.40					
		ENH	IANCED RECOVERY PROJ	ECTS		
Enhanced recovery projects Date started Date discontinued		·				
			'			
		)				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	33,023,637 1966				:	
	1700					

Base of fresh water (ft.): 1.100

Remarks: Commercial gas deliveries began in December 1961. Abnormally high pressure gradient at depth. Many of the gas sand stringers have been given local names by operators.

# WEST GRIMES GAS FIELD





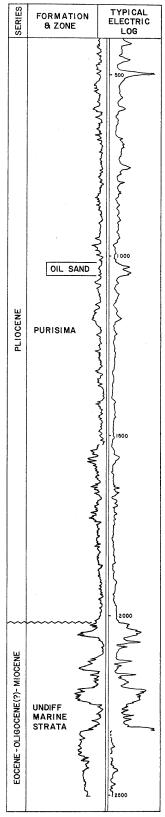
COUNTY: COLUSA

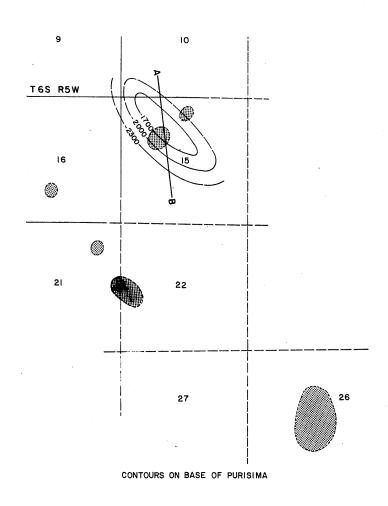
GRIMES, WEST, GAS FIELD

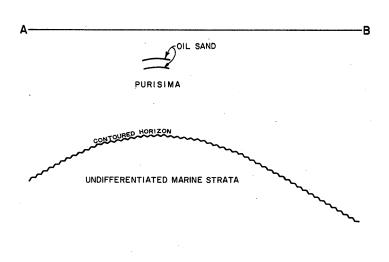
### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Occidental Petroleum Corp. "Sachreiter"	Same as present	4 14N 1W	MD	8,263	Forbes	
Deepest well	Getty Oil Co. "Balsdon" 2	Tidewater Oil Co. "Balsdon" 2	22 14N 1W	MD	9,585		Forbes Late Cretaceous

|--|


	<b></b>		POOL DATA			
ITEM	FORBES	·				FIELD OR Area data
Discovery dateInitial production rates Oil (bbl/day)	December 1960					
Gas (Mcf/day)	14,730 2,300 3/4				·	
pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	3,055-5,425 120-132 1,400-1,700		-			
Initial gas content (MSCF/acft.). Formation	Forbes Late Cretaceous 6,050-7,850 3-35					
Maximum productive area (acres)	3,350					
		RE	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	22-28 35-46 54-65					
remeability to air (mg)		DE	SERVOIR FLUID PROPERT	riec		
Oil:			SERVOIR FEOID FROTER			
Oil gravity (°API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.570 970-1,010					
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	16,200-25,300					
kw (Omir/III) (// r)		ENI	IANCED RECOVERY PROJ	ECTS		
Enhanced recovery projects Date started Date discontinued						
		· 				
Peak oil production (bbl) YearPeak gas production, net (Mcf)	5,921,389					
Year	1964					


Base of fresh water (ft.): 1,400-2,450


Remarks: Commercial gas deliveries began in December 1961.

Selected References: Beecroft, G. W., 1962, West Grimes Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 2.

# HALF MOON BAY OIL FIELD







DECEMBER 1979

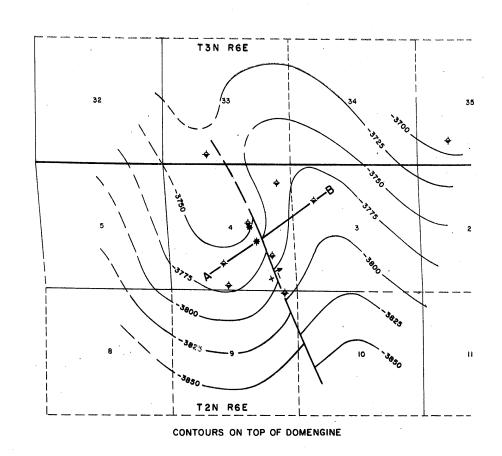
### HALF MOON BAY OIL FIELD

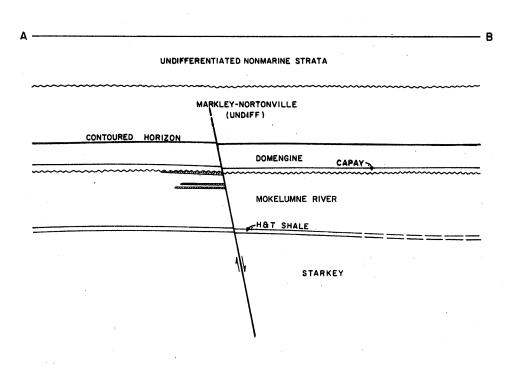
# **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec	. т.	& R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	J. Berger (?)	Same as present	15	68	SW	MD	(?)	Purisima	
Deepest well	Wilshire Oil Co., Inc. "Cowell" 1	Same as present	21	6S	5W	MD	7,982		undiff. marine Eocene

#### **POOL DATA**

			POOL DATA			
ITEM	PURISIMA		·			FIELD OR AREA DATA
Discovery date	1890 <u>+</u>				·	
Initial production rates						
Oil (bbl/day)						
Gas (Mcf/day)						
Flow pressure (psi) Bean size (in.)	1					
Initial reservoir				į.		
pressure (psi)		* .				
Reservoir temperature (°F)						
Initial oil content (STB/acft.)					1	
Initial gas content (MSCF/acft.).	į					
Formation	Purisima		ł			
Geologic age	Pliocene					
Average depth (ft.)	800-2,700				ŀ	1
Average net thickness (ft.) Maximum productive	50	1				1
area (acres)	155			1		
area (acres)						
		RI	SERVOIR ROCK PROPER	TIES		L
Porosity (%)	28-34				4	
Soi (%)						
Swi (%)						
Sg; (%)	1-40				ļ	
Permeability to air (md)			1			
		: RI	SERVOIR FLUID PROPER	TIES	L	I
			T			
Oil:	18-45	·				
Oil gravity (°API)	16-45					
Sulfur content (% by wt.)						
Initial solution GOR (SCF/STB)			1			
Initial oil FVF (RB/STB)			1			İ
Bubble point press. (psia)						
Viscosity (cp) @ °F						"
	i .					
Gas:						l
Specific gravity (air = 1.0)			1			4
Heating value (Btu/cu. ft.)	l					
Water:						
Salinity, NaCl (ppm)		1				
T.D.S. (ppm)						ĺ
R _W (ohm/m) (77°F)		1				
		1	<u> </u>	<u> </u>	1	<u> </u>
		EN	ANCED RECOVERY PRO	JECTS		<b>Y</b>
Enhanced recovery project-		4.5				
Enhanced recovery projects  Date started		1				
Date discontinued						
			1			
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		1		1		
		1				
		,				
Peak oil production (bbl)	unknown		1.	1		
Year						
Peak gas production, net (Mcf)			1		,	
Year						
	<del></del>	***************************************		<del></del>	<del></del>	


Base of fresh water (ft.): 100


Remarks:

Selected References: Crandall, R. R., 1943, Half Moon Bay District in Geologic Formations and Economic Development of the Oil and Gas Fields of Calif.: Calif. Div. of Mines Bull. 118, p. 478-480.

# HARTE GAS FIELD

	SERIES	FORMATION	TYPICAL ELECTRIC LOG
	POST - EOCENE	UNDIFF NONMARINE STRATA	2000
	~~	~~~~	~ (1)
		MARKLEY – NORTONVILLE (UNDIFF)	3000
	EOCENE		3500
		DOMENGINE	4000
-	~	CAPAY	-
		MOKELUMNE RIVER	4500 HWW 5000
	UPPER CRETACEOUS	H&T SHALE	5500
	UPPER CI		6000
		STARKEY	6500
			7000





SEPTEMBER 1978

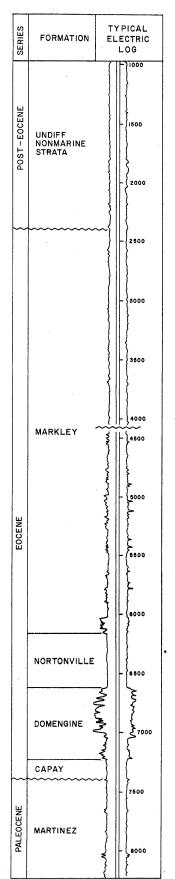
COUNTY: SAN JOAQUIN

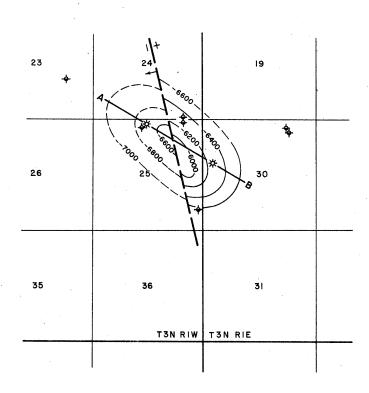
# **HARTE GAS FIELD**

# DISCOVERY WELL AND DEEPEST WELL

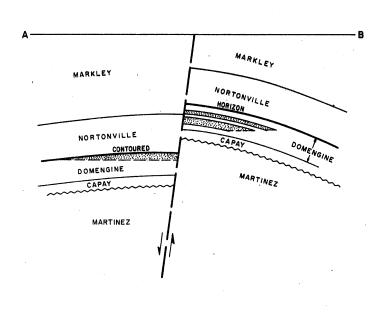
	Present operator and well designation	Original operator and well designation	Sec	. т. а	& R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Tri-Valley Oil & Gas Co. "Dawang" 1	Same as present	4	2N	6E	MD	6,940	Mokelumne River	
Deepest well	Tenneco West, Inc. "KCY-Reserve Podesta Unit" 1	Kern County Land Co., Oper. "KCY-Reserve Podesta Unit" 1	4	2N	6E	MD	8,785		Sacramento shale Late Cretaceous

# **POOL DATA**


			POOL DATA			
ITEM	MOKELUMNE RIVER	STARKEY				FIELD OR AREA DATA
Discovery dateInitial production rates	September 1975	December 1976				·
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi)	1,443 1,672	1,250 2,250			·	·
Bean size (in.) Initial reservoir pressure (psi)	2,032	10/64 3,488				
Reservoir temperature (°F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.).	119-122	151 2,000				
Geologic age	Mokelumne River Late Cretaceous 4,400-4,700	Starkey Late Cretaceous 6,970	,		,	
Average net thickness (ft.) Maximum productive area (acres)	10-25	10				60
		RI	SERVOIR ROCK PROPERT	ries		
Porosity (%)	30**	30**				
Soj (%)	30**	30** 70**		·		
		R	SERVOIR FLUID PROPER	TIES .		
Oil: Oil gravity (*API)Sulfur content (% by wt.)		* :				
Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.603 902	.581 961				
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)						
		ENI	IANCED RECOVERY PROJ	ECTS		
Enhanced recovery projects Date started Date discontinued						
		٠.				
		1				
						-
Peak oil production (bbl) Year Peak gas production, net (Mcf)						233,541
Year						1978


Base of fresh water (ft.): 600-700

Remarks: Commercial gas deliveries began in March 1976.


# HONKER GAS FIELD

(Abandoned)





CONTOURS ON TOP OF DOMENGINE



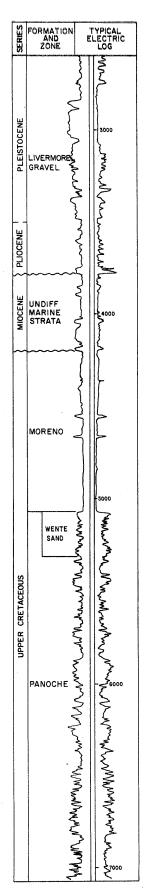
DECEMBER 1979

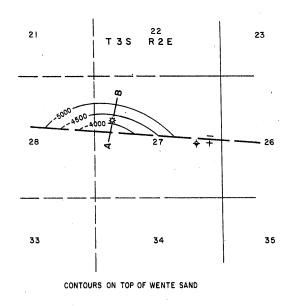
COUNTY: SOLANO

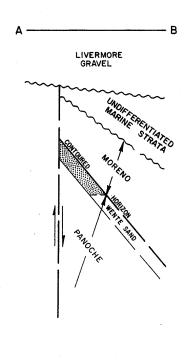
# **HONKER GAS FIELD** (ABD)

### **DISCOVERY WELL AND DEEPEST WELL**

		Present operator and well designation	Original operator and well designation	Sec. T	. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discove	ery well	Chevron U.S.A. Inc. "Honker Community" 1-A	Standard Oil Co. of Calif. "Honker Community" 1-A	25 3	N 1W	MD	8,304	Domengine	
Deepest	t well	Aminoil USA, Inc. "Standard-King" 1	Signal Oil & Gas Co. "Standard-King" 1	24 3	N 1W	MD	11,070 <u>a</u>	/	undiff. marine Late Cretaceous


			POOL DATA			
ITEM	DOMENGINE					FIELD OR AREA DATA
Discovery date	April 1944 3,200 2,229 1 1/4					,
pressure (psi)  Reservoir temperature (*F)  Initial oil content (STB/acft.)  Initial gas content (MSCF/acft.)  Formation  Geologic age  Average depth (ft.)  Average net thickness (ft.)  Maximum productive  area (acres)	3,200 151 920-1,200 Domengine Eocene 6,500 180					
,		RE	SERVOIR ROCK PROPER	TIES		
Porosity (%)	18-22*** 40-45*** 55-60***					
		RE	SERVOIR FLUID PROPER	TIES	L	
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.597†† 1,040					
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	12,300					
		ENI	I IANCED RECOVERY PRO	JECTS	L	
Enhanced recovery projects Date started Date discontinued						
		,				
Peak oil production (bbl) Year	277,436 1947					


Base of fresh water (ft.): 150


Remarks: Commercial gas deliveries began in January 1947. The field was abandoned in November 1949. Two wells were completed and cumulative gas production was 300,788 Mcf.

a/ Directional well, true vertical depth is 10,512 feet.

# HOSPITAL NOSE GAS FIELD (Abandoned)







DECEMBER 1979

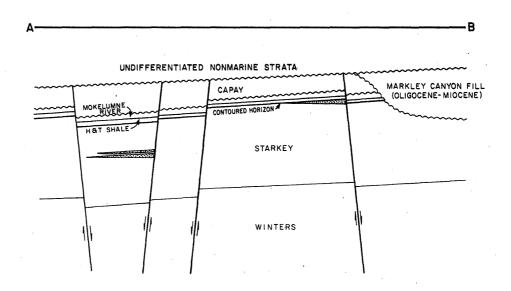
COUNTY: ALAMEDA

# **HOSPITAL NOSE GAS FIELD** (ABD)

#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Texaco Inc. "Hancock-Signal (NCT-1) Wente" 1	The Texas Co. "Hancock-Signal (NCT-1) Wente"	27 3S 2E	MD	7,062	Wente	Panoche Late Cretaceous
Deepest well	Same as above	п	" .	"	11 .	, "	"

Deepest well	Same as abo					
			•	POOL DATA		
ITEM		WENTE				FIELD OR AREA DATA
Discovery date Initial production rat Oil (bbl/day)	es	April 1952				
Gas (Mcf/day) Flow pressure (p Bean size (in.) Initial reservoir		150 500 1/8		:	·	
pressure (psi) Reservoir temperatur Initial oil content (SI	e (°F) B/acft.)	1,610 136 510			·	
Initial gas content (M Formation	ss (ft.)	Panoche Late Cretaceous 5,070 110				
area (acres)	***************************************		ŘE	SERVOIR ROCK PROPERT	TIES	
Porosity (%)		20**				
Soj (%) Swj (%) Sgj (%) Permeability to air (i		50** 50**				
			RE	SERVOIR FLUID PROPERT	ries	
Oil: Oil gravity (*API) Sulfur content (% Initial solution GOR (SCF/STB Initial oil FVF (RB Bubble point press Viscosity (cp) @ *	by wt.)		:			
Gas: Specific gravity (a Heating value (Bt	ir = 1.0) u/cu. ft.)	.70 ^{††} 1,285				
Water: Salinity, NaCl (pp T.D.S. (ppm) R _W (ohm/m) (77		561				
			ENI	IANCED RECOVERY PROJ	ECTS	
Enhanced recovery p Date started Date discontinue		· · ·				
			,			
Peak oil production YearPeak gas production Year	, net (Mcf)	9,424 1954				


Base of fresh water (ft.): 1,500

Remarks: Commercial gas deliveries began in November 1952. The field was abandoned in June 1956. Only one well was completed and cumulative gas production was 14,183 Mcf.

Selected References:

	SERIES		RMATION MEMBER		TYPICAL ELECTRIC LOG
	MIOCENE TO HOLOCENE	N	NDIFF Onmarine Trata	W. C. Lovensky Miller manners	1500
	EOCENE	c	APAY		<b>\</b>
	Suc	STARKEY TE STARKEY	KELUMNE RIVER B-T SHALE S-I SAND S-2 SAND S-3 SAND S-4 SAND	1-1- Mary Land Mary Company	2500
í	UPPER CRETACEOUS	w	INTERS	- Beneficial	3500
					4000

JANUARY 1980



COUNTY: SUTTER

Discovery well

Deepest well

The Dow Chemical Co. "Richter, et al Unit Same as present Well" 1

#### KARNAK GAS FIELD

Winters Late Cretaceous

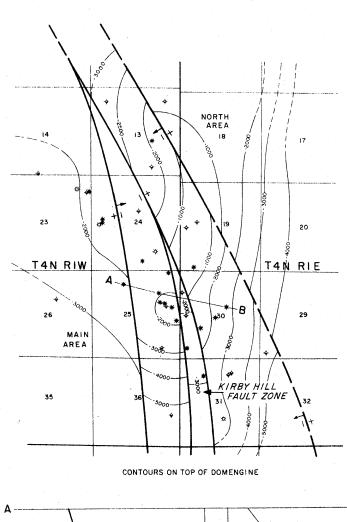
	DISC	OAFKA MELL WAD DEELES! MELL						
	Present operator and well designation	Original operator and well designation	Sec. T.	& R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
-			16 11N	3E	MD	4,232 a	Starkey	
	THE DOW CHEMICAL CO. "Anderson Parms 1	Jame as present	1		1		1	Wintors

17 11N 3E

MD 4,567

**POOL DATA** FIELD OR AREA DATA STARKEY ITEM August 1976 1,400-2,670 940-1,210 16/64-20/64 1,060-1,350 99-106 640-680 Starkey Late Cretaceous 2,400-3,000 15-30 100 RESERVOIR ROCK PROPERTIES 29-331 40-45 t 55-60 t RESERVOIR FLUID PROPERTIES Oil: bil:
Oil gravity (*API)
Sulfur content (% by wt.).....
Initial solution
GOR (SCF/STB)....
Initial oil FVF (RB/STB)....
Bubble point press. (psia)....
Viscosity (cp) @ *F..... .569-.625 842-980 Specific gravity (air = 1.0)...... Heating value (Btu/cu. ft.)...... Water:
Salinity, NaCl (ppm) ...........
T.D.S. (ppm) ...........
R_W (ohm/m) (77°F) ...... ENHANCED RECOVERY PROJECTS Enhanced recovery projects...

Date started .....


Date discontinued ..... Peak oil production (bbl) 

Base of fresh water (ft.): 1,000

Remarks: Commercial gas deliveries have not yet begun. a/ Directional well, true vertical depth is 4,469 feet.

### KIRBY HILL GAS FIELD

SERIES	FORMATION	MEMBER & ZONE	COMPOSITE ELECTRIC LOG
	MARKLEY		2000
EOCENE	NORTONVILLE		3000
EO	DOMEN- GINE		
	САРАЎ	MARGARET HAMILTON SAND	4000
	MEGANOS	"MEGANOS "C" SHALE  D & E ZONE SHALE & SA	ND
PALEOCENE	MARTINEZ	WAGENET SAND	6000
		MARTINEZ SHALE	
	WINTERS		7000
CEOUS	SAC SHA	RAMENTO]	6000
UPPER CRETACEOUS	FORBES		9000



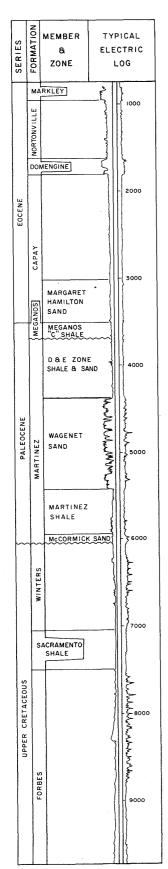


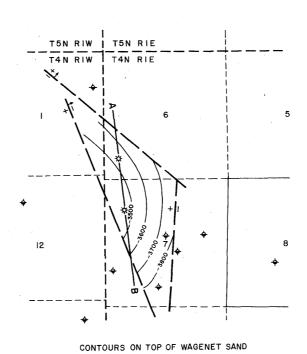
COUNTY: SOLANO

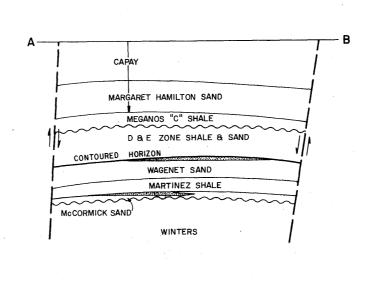
# KIRBY HILL GAS FIELD

#### **DISCOVERY WELL AND DEEPEST WELL**

		Present operator and well designation	Original operator and well designation	Sec.	T. &	R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
ı	Discovery well	The Dow Chemical "Lambie" 1-A	Shell Oil Co. "Lambie" 1-A	24 4	4N	IW	MD	2,617	Domengine	
	Deepest well	The Dow Chemical Co. "Lambie" 6	Shell Oil Co. "Lambie" 6	30 4	4N	1E	MD	7,897		undiff. marine Late Cretaceous


						<del></del>
[			POOL DATA	WACENET	(UNNAMED)	FIELD OR
ITEM	MARKLEY	NORTONVILLE	DOMENGINE	WAGENET	(ONNAMED)	AREA DATA
Discovery date	July 1972	August 1947	January 1945	March 1945	February 1948	
Flow pressure (psi) Bean size (in.)	238 95 5/16	1,090 693 1/4	3,980 650 1/2	14,400 1,641 5/8	4,720 807 1/2	
Initial reservoir pressure (psi)	250 89	1,160 93-105	1,195 97-112	2,205 110-140	3,915 150	
Initial gas content (MSCF/acft.). Formation	80-110 Markley Eocene 1,100	580-600 Nortonville Eocene 1,250-2,250 35	450-470 Domengine Eocene 1,550-2,850	870-1,200 Martinez Paleocene 2,850-5,400 150	Forbes Late Cretaceous 5,425 40	
Average net thickness (ft.)	30	35	130	150		1,060
	-	RI	SERVOIR ROCK PROPER	TIES	L	
Paracity (0()	18-24***	25	19	20-24***		
Porosity (%)	40-45*** 60-65***	35 65	36 64	30-35*** 65-70***	,	
Permeability to air (md)		PI	SERVOIR FLUID PROPER	TIES		
				1	<u> </u>	
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.595 ^{††} 990	.590 ^{††} 985	.600 ^{††} 995	.595 ^{††}	.585 ^{††} 980	
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	8,217	1,968-14,124	942-16,778	7,704-14,723	4,280-6,848	
(2222)	· · · · · · · · · · · · · · · · · · ·	ENI	IANCED RECOVERY PRO	HECTS		
Enhanced recovery projects Date started Date discontinued						
		·				
					. ,	
7						
Peak oil production (bbl)						
YearPeak gas production, net (Mcf) Year	3,715,880 1949					


Base of fresh water (ft.): 250-1,800


Remarks: Abnormally high pressures encountered at depth. Commercial deliveries began in November 1946. Part of the field is being used for gas storage purposes by the Dow Chemical Company. The working gas storage capacity is 12,000,000 Mcf with an approximate maximum withdrawal rate of 5,000 Mcf/day.

Selected References: Frame, R. G., 1949, Preliminary Report on Kirby Hill Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 35, No. 1.

# NORTH KIRBY HILL GAS FIELD (Abandoned)





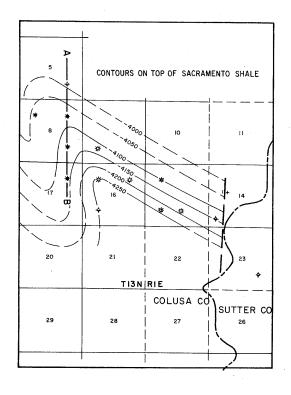


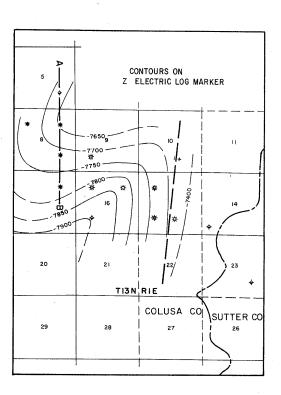
NOVEMBER 1979

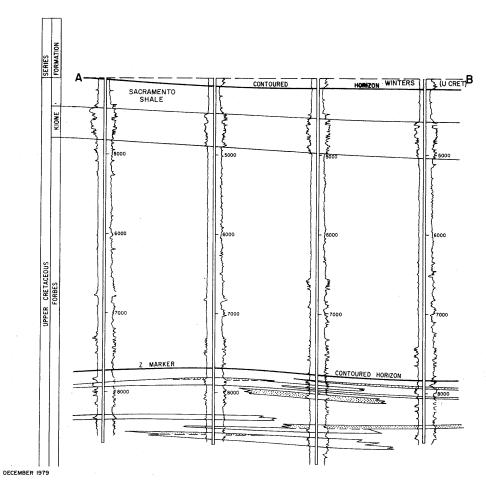
COUNTY: SOLANO

# KIRBY HILL, NORTH, GAS FIELD (ABD)

# **DISCOVERY WELL AND DEEPEST WELL**


	Present operator and well designation	Original operator and well designation	Sec.	т. 8	k R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Longden Petroleum Co. "Unit B" 1	Shell Oil Co. "Unit B" 1	7	4N	1E	MD	4,309	Wagenet	
Deepest well	Shell Oil Co. "Stewart" 1	Same as present	7	4N	1E	MD	9,667		F-zone Late Cretaceous


· .			POOL DATA			
ITEM	WAGENET	McCORMICK				FIELD OR AREA DATA
Discovery date	July 1953	February 1954				
Gas (Mcf/day)	5,000	4,640			2	
Flow pressure (psi)	385	1,420				
Bean size (in.)	3/4	3/8				
pressure (psi)	1,695	1,650				
Reservoir temperature (°F)	124	133	1			
Initial oil content (STB/acft.)	670-860	490-700				
Initial gas content (MSCF/acft.). Formation	Martinez	Martinez				
Geologic age	Paleocene	Paleocene	1	1		
Average depth (ft.)	3,510	4,260				
Average net thickness (ft.)	40	20				
Maximum productive area (acres)						100
urca (acres)						100
		Ri	SERVOIR ROCK PROPER	ries ,		
Porosity (%)	20-24 ***	18-22***				
Soj (%)	30-35 ***	35-45***				
Sgi (%)	65-70***	55-65***				
Permeability to air (md)						
·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>		<u> </u>		
		T RI	SERVOIR FLUID PROPER	TIES		
Oil:	,					
Oil gravity (°API)						
Sulfur content (% by wt.) Initial solution						
GOR (SCF/STB)						
initial oil FVF (RB/STB)						
Bubble point press. (psia)						
Viscosity (cp) @ °F						
Gas:						
Specific gravity (air = 1.0)	.573††	.590††				
Heating value (Btu/cu. ft.)	980	1,025				
Water:						
Salinity, NaCl (ppm)	5,500	16,600-24,000				
T.D.S. (ppm) R _W (ohm/m) (77°F)						
KW (OIIII/III) (// F)			<u> </u>			····
· · · · · · · · · · · · · · · · · · ·		ENI	HANCED RECOVERY PROJ	JECTS		
Enhanced recovery projects			,			
Date started						
Date discontinued		1		i	1	
wowmanded		1				
-ac disconnided						
-ac viscontinacy						
-ac victoritied						
- Act disconnided						
- Sac discontinued						
Sac disconnided					t	
Sac disconnided		. , , , , , , , , , , , , , , , , , , ,				
Sac disconnided		. ,			t	
Sac disconnided		. ,				
		,			t	
Peak oil production (bbl) Year						
						184,294 1956


Base of fresh water (ft.): None

Remarks: Commercial gas deliveries began in March 1956. The field was abandoned in March 1957. Two wells were completed and cumulative gas production was 187,461 Mcf.

# KIRK GAS FIELD





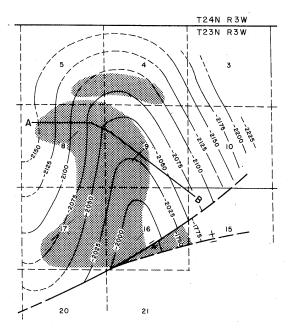


COUNTY: COLUSA and SUTTER

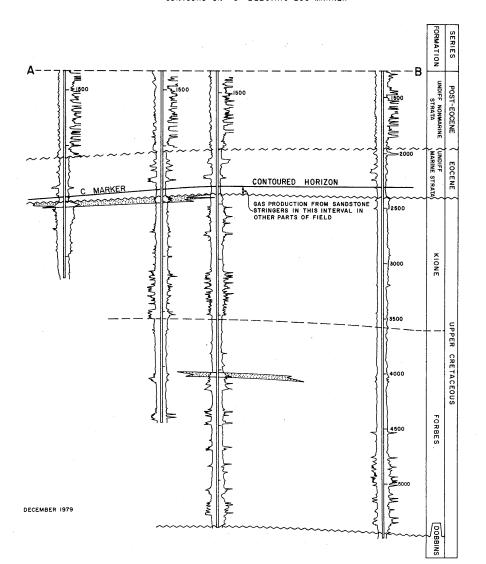
KIRK GAS FIELD

### **DISCOVERY WELL AND DEEPEST WELL**

		Present operator and well designation		Sec. T. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
1	Discovery well	Gulf Oil Corp. "Goff-Erdman Unit A" 1	Western Gulf Oil Co. "Gulf-Erdman Unit A"	15 13N 1E	MD .	9,522	Forbes	Guinda
	Deepest well	Same as above	1 "	"	"	"	99	Late Cretaceous


			POOL DATA			
ITEM	FORBES		·			FIELD OR Area data
Discovery date	October 1960 3,037 1,150 18/64					
Initial reservoir pressure (psi)	3,750-5,750 139-154 1,400-1,600					
Formation	Forbes Late Cretaceous 7,330-8,710 15-95					
area (acres)	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	R	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	24-29 48-55 45-52					
		RI	SERVOIR FLUID PROPER	TIES	1	
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.650570†† 783-1,015					
Water:     Salinity, NaCl (ppm)	11,200-18,000					
		ENI	IANCED RECOVERY PROJ	JECTS		
Enhanced recovery projects Date started Date discontinued	·					
		,				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	1,018,815 1963					
	L	1	L		1	

Base of fresh water (ft.): 1,950


Remarks: Commercial gas deliveries began in December 1961.

Selected References: Hunter, W. J., 1962, Kirk Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 1.

# KIRKWOOD GAS FIELD



CONTOURS ON C ELECTRIC LOG MARKER



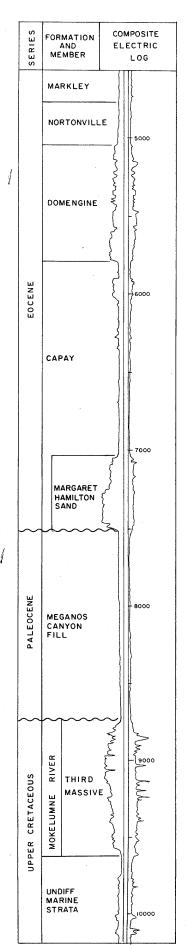
COUNTY: TEHAMA

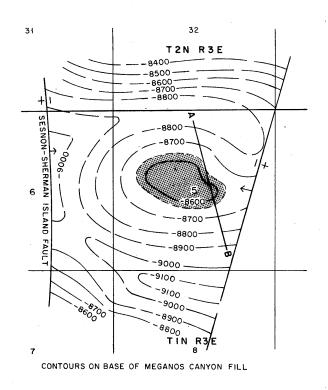
# KIRKWOOD GAS FIELD

# **DISCOVERY WELL AND DEEPEST WELL**

		Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
ı	Discovery well	James W. Morgan "James W. Morgan et al" 1	Humble Oil & Refining Co. "James W. Morgan et al" 1	9 23N 3W	MD	5,435	Forbes	
	Deepest well	Sun Oil Co. "Tucker-Gay" 1		10 23N 3W	MD	5,900		Dobbins Late Cretaceous

PC	o	n	Ψ.	TΔ


	POOL DATA							
ITEM	UNDIFFERENTIATED MARINE STRATA	KIONE	FORBES			FIELD OR AREA DATA		
Discovery date	July 1960	May 1960	December 1958					
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	4,550 750 1/2	3,280 640 25/64	1,120 750 1/2					
Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	1,080 94	1,020 95	1,970 105	. 1				
Initial gas content (MSCF/acft.). Formation	410-670 undiff. marine strata Eocene 2,400 25	480-580 Kione Late Cretaceous 2,430 40	580-970 Forbes Late Cretaceous 4,020 30			1,770		
area (acres)						2,		
			SERVOIR ROCK PROPERT	IIES				
Porosity (%)	20-30*** 35-40** 60-65**	25-28*** 35-40*** 60-65***	18-25 40-50 50-60					
	·	RE	   SERVOIR FLUID PROPERT	ries				
Oil: Oil gravity ('API)		:						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.560 1,005	.557†† 1,010	.557†† 1,010					
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	2,100	2,200	-	-				
		ENH	IANCED RECOVERY PROJ	JECTS				
Enhanced recovery projects Date started Date discontinued		· .						
Peak oil production (bbl) YearPeak gas production, net (Mcf) Year		·				1,496,884 1962		


Base of fresh water (ft.): 2,000

Remarks: Commercial gas deliveries began in May 1961. Some of the Eocene sand stringers have been given local names by the operators.

Selected References: Beecroft, G. Wr, 1964, Kirkwood Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 50, No. 1.

# KNIGHTSEN GAS FIELD

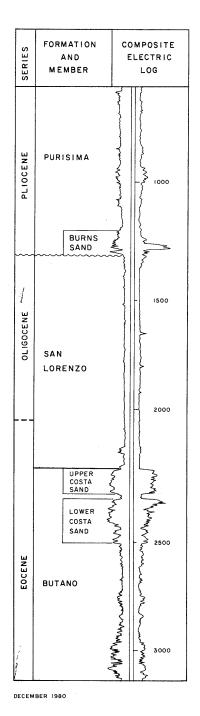


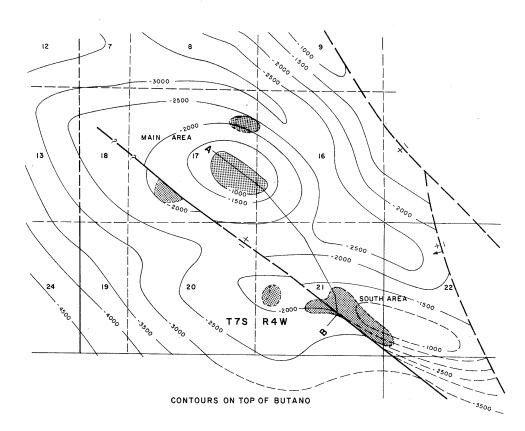


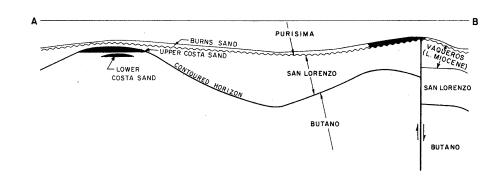
Α	
	MARKLEY
	NORTONVILLE
	DOMENGINE
	CAPAY
	CMPMY
	MARGARET HAMILTON SD.
,	
	MEGANOS CANYON FILL
	CONTOURED HORIZON
	MOKELUMNE RIVER
	UNDIFFERENTIATED MARINE/ STRATA
	UNDIFFERENTIATED MARINE STRATA

COUNTY: CONTRA COSTA

# **KNIGHTSEN GAS FIELD**


# **DISCOVERY WELL AND DEEPEST WELL**


	,	Present operator and well designation	Original operator and well designation	Sec.	T. 8	& R.	B.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
۱	Discovery well	Natural Gas Corp. of Calif. "Western- Murphy-et al" 1	Same as present	5	1N	3E	MD	10,673	Third Massive	Tracy Late Cretaceous
	Deepest well	Same as above	"		**		"	"	"	"


			POOL DATA			
ITEM	THIRD MASSIVE					FIELD OR AREA DATA
Discovery date	March 1980 1,098 2,250	:	·			
Bean size (in.)	10/64 3,350 178 1,100-1,600	: •				
Formation Geologic age	Mokelumne River Late Cretaceous 8,700 25					
,		RE	SERVOIR ROCK PROPERT	ries	1	
Porosity (%)	18-25† 30-35† 65-70†					
		RE	SERVOIR FLUID PROPERT	ries		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (\$CF/\$TB) Initial oil FVF (RB/\$TB) Bubble point press. (psia) Viscosity (cp) @ *F						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.611 1,083					
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)						
		ENI	IANCED RECOVERY PROJ	ECTS		
Enhanced recovery projects Date started Date discontinued		1				
						·
					,	
Peak oil production (bbl) YearPeak gas production, net (Mcf) Year						

Base of fresh water (ft.): 100-300

Remarks: Commercial gas deliveries have not yet begun.







# LA HONDA OIL FIELD Cont.....

### **DISCOVERY WELL AND DEEPEST WELL**

		Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
П	Discovery well	Zia La Honda, Ltd. "Carter Lane" 2	Neaves Petroleum Developments "Neaves-Union Oil-Lane"3	17 7S 4W	MD	1,795	Costa	
		Neaves Petroleum Developments "Neaves - Union Oil Co.Lane" l	Same as the present	16 7S 4W	MD	4,271	. '	Butano Eocene

•			POOL DATA			
ITEM	COSTA					FIELD OR AREA DATA
Discovery date	December 1956 100 15 195					
Initial of control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of	87 1,300-1,700 Butano Eocene 1,800 60				·	
area (acres)		 Ri	SERVOIR ROCK PROPER	 		135
Porosity (%)	30-35 60-70 30-40					
		RE	SERVOIR FLUID PROPER	TIES		
Oil: Oil gravity (*API)	32-40 200 1.1					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	nggan an an					
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	19,700					
		ENF	IANCED RECOVERY PROJ	ECTS	I management	
Enhanced recovery projects Date started Date discontinued						
		,				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						178,184 1957

Base of fresh water (ft.):

Remarks:

Selected References: Fothergill, H. L., 1962, La Honda Oil Field, Calif. in Geologic Guide to the Gas and Oil Fields of Northern Calif.: Div. of Mines and Geology Bull. 181, p. 221-222.

# LA HONDA OIL FIELD MAIN AREA

# **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec.	T. &	R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Zia La Honda, Ltd. "Carter-Lane" 2	Neaves Petroleum Developments "Neaves- Union Oil-Lane" 3	17	7S	4 W	MD	1,795	Costa	
Deepest well	Neaves Petroleum Developments "Neaves- Union Oil Co. Lane" 1	Same as present	16	7S	4 W	MD	4,271	*	Butano Eocene

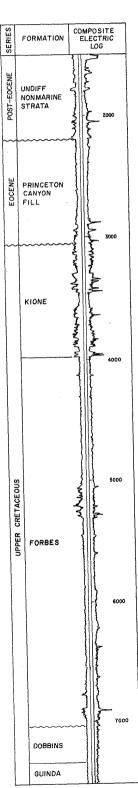
			POOL DATA			
ITEM	BURNS	COSTA				FIELD OR AREA DATA
Discovery date	May 1958 17 - -	December 1956 100 15 195				
pressure (psi)  Reservoir temperature (*F)  Initial oil content (STB/acft.)  Initial gas content (MSCF/acft.).  Formation  Geologic age  Average depth (ft.)  Average net thickness (ft.)  Maximum productive  area (acres)	Purisima Pliocene 1,120 30	87 1,300-1,700 Butano Eocene 1,800 60				70
		RE	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	ā	30-35 60-70 30-40				
		RE	SERVOIR FLUID PROPERT	TIES		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F	24 - -	32-40 200 1.1				
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)						
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	-	19,700				
		ENH	ANCED RECOVERY PROJ	ECTS	L	
Enhanced recovery projects Date started Date discontinued						
		,				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						178,184 1957

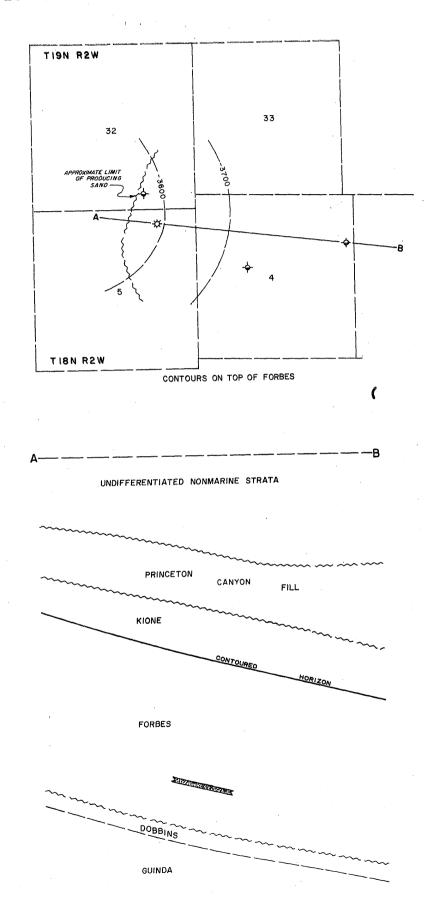
Base of fresh water (ft.): 150

Remarks:

# LA HONDA OIL FIELD SOUTH AREA

# DISCOVERY WELL AND DEEPEST WELL


	Present operator a	nd well designa	ation O	riginal operator and well designati	ion Se	c. T. &	& R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Zia La Honda, Ltd.	"Burns" 1		Petroleum Developments "Neav	res- 21	75	4W	MD	1,451	Burns	
Deepest well	Zia La Honda, Ltd.	"Burns-Texaco	" 1 Neaves	on-Burns" 1 s Petroleum Developments "Neav on Burns" 14	res- 22	7S	4W	MD	4,015		Butano Eocene
•				POOL DATA							
ITEM	E	URNS	COSTA								FIELD OR ARFA DATA


ITEM	BURNS	COSTA	TOOL DATA			FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	Insufficient to flow  93  900-1,400  Purisima Pliocene 1,400 75	January 1961  30  110 1,300-1,700  Butano Eocene 2,500 30				65
area (acres)		£0 E	SERVOIR ROCK PROPERT	TEC		
Porosity (%)	22-30 60-65 35-40	30-35 60-70 30-40	SERVOIR ROCK I ROLLAN	11.5		
		RI	SERVOIR FLUID PROPERT	TIES		
Oil: Oil gravity (*API)	150 1.1	31 150 <del>*</del> 1.1			3	
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm)		- -				
T.D.S. (ppm) R _W (ohm/m) (77°F)						
		ENI	I IANCED RECOVERY PROJ	ECTS		
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						95,717 1960

Base of fresh water (ft.): 150

Remarks

# WEST LARKIN GAS FIELD



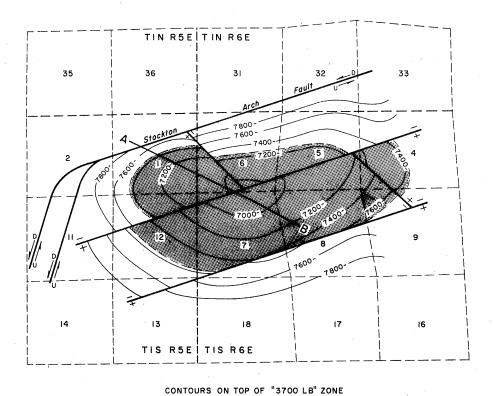


DECEMBER 1979

COUNTY: GLENN

LARKIN, WEST, GAS FIELD

### **DISCOVERY WELL AND DEEPEST WELL**


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Gulf Oil Corp. "Capital Company" 1	Gene Reid Drilling, Inc. "Capital" 1	5 18N 2W	MD	5,993	unnamed	
Deepest well	Chevron U.S.A. Inc. "Transamerica Development Co." 1	Houston Oil & Minerals Corp. "Transamerica Development Co." 1	32 19N 2W	MD	7,876		Guinda Late Cretaceous

			POOL DATA			
ITEM	UNNAMED					FIELD OR AREA DATA
Discovery dateInitial production rates	December 1955					
Oil (bbl/day) Gas (Mcf/day)	1,000					
Flow pressure (psi)	650 16/64					
Bean size (in.)Initial reservoir						
Pressure (psi)	3,040 118					
Initial oil content (STB/acft.)						
Initial gas content (MSCF/acft.). Formation	720-1,050 Forbes					
Geologic age	Late Cretaceous					
Average depth (ft.) Average net thickness (ft.)	5,933 18					
Maximum productive		;				
area (acres)	40					
		Ri	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	15-20***					
So; (%)	45-50***					
Swi (%) Sgi (%)	50-55***					
Permeability to air (md)						
		RE	SERVOIR FLUID PROPERT	TIES	<u> </u>	
Oil: Oil gravity (°API)						
Sulfur content (% by wt.)						
Initial solution GOR (SCF/STB)						
Initial oil FVF (RB/STB)	,	1			,	
Bubble point press. (psia) Viscosity (cp) @ *F						
Gas:						
Specific gravity (air = 1.0)	.570 ^{††} 980*				,	
Heating value (Btu/cu. ft.)	380					
Water: Salinity, NaCl (ppm)						
T.D.S. (ppm)						
R _W (ohm/m) (77°F)						
		EN	IANCED RECOVERY PROJ	ECTS		
Enhanced recovery projects						
Date started					·	
Date discontinued						
	Į.	r				
Peak oil production (bbl)						
Year						
Peak gas production, net (Mcf)	3,340 1957					
Year	1551			<u> </u>		

Base of fresh water (ft.): 1,600

Remarks: Originally named the Willow Creek Gas area. No commercial gas sales were made; all gas produced was used to provide fuel to drill Gulf Oil Corp.
"Capital Company" 2, Sec. 8, T. 18 N., R. 2 W. The field was abandoned in May 1958. Only one well was completed and cumulative gas production was 3,340 Mcf. The field was reactivated in May, 1981.

SERIES	FORMATION AND MEMBER	TYPICAL ELECTRIC LOG
MIOCENE-PLIOCENE SERIES	UNDIFF. NONMARINE STRATA	3000
	GARZAS - AZEVEDO - BLEWETT (UNDIFF.)	4000
	RAGGED VALLEY SHALE	
	TRACY – SAWTOOTH SHALE (UNDIFF.)	5000
	"E" ZONE SHALE	
UPPER CRETACEOUS	LATHROP SANDS	7000
	SACRAMENTO SHALE	10,000
	FORBES	11,000
	DOBBINS	12,000



GARZAS - AZEVEDO - BLEWETT (UNDIFF.)

RAGGED VALLEY SHALE

"E" ZONE SHALE

CONTOURED HORIZON

3700 LB ZONE

3600 LB ZONE

3900 LB 4000 LB ZONE

4200 LB 200E

4400 LB 200E

4400 LB 200E

SACRAMENTO SHALE

SACRAMENTO SHALE

SACRAMENTO SHALE

NOVEMBER 1979

#### **LATHROP GAS FIELD**

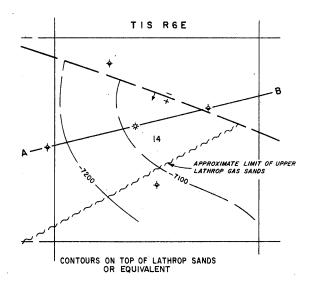
#### **DISCOVERY WELL AND DEEPEST WELL**

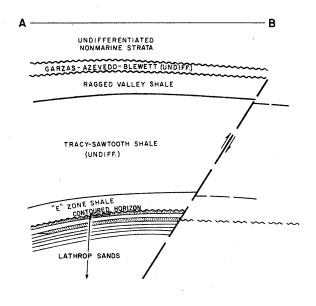
	Present operator and well designation	Original operator and well designation	Sec.	T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Occidental Petroleum Corp. "Lathrop Unit A" 1	Same as present	5	15	6E	MD	7,860	Lathrop	
Deepest well	Occidental Petroleum Corp, "Lathrop Unit B" 5	Same as present	7	18	6E	MD	12,787		G-zone Late Cretaceous

PO	OL	. D.	A٦	ГΑ

			POOL DATA			
ITEM	AZEVEDO	TRACY	LATHROP			FIELD OR AREA DATA
Discovery dateInitial production rates	December 1971	January 1962	October 1961			
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	2,225 1,465 1/4	150-540 <u>a</u> / 160-430 1/8-3/8	4,280-21,800 1,600-2,510 5/16-3/4			
Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	1,920	2,240-2,810 121-137	3,610-4,240 143-159			
Initial gas content (MSCF/acft.). Formation	900 Azevedo Late Cretrieous 3,950	1,200-1,400 Tracy Late Cretaceous 4,747-6,295	1,600 Lathrop Late Cretaceous 6,906-8,422			
Average net thickness (ft.) Maximum productive area (acres)	75	50-75	75-550			2,330
		RE	SERVOIR ROCK PROPER	TIES		
Porosity (%)	-	<b>.</b> .	23-27			
Swi (%) Sgj (%) Permeability to air (md)		, <del>-</del> -	35-40 60-65 48-79			
		RE	SERVOIR FLUID PROPER	TIES		
Oil: Oil gravity (*API)						
Viscosity (cp) @ °F	.597†† 920	.564†† 1,000	.578636†† 825-960			.620 863
Water: Salinity, NaCl (ppm) T.D.S. (ppm)	· ·	:	10,700-25,900			15,000-27,000
R _W (ohm/m) (77°F)		:				
		ENF	IANCED RECOVERY PRO	JECTS	1	
Enhanced recovery projects Date started Date discontinued						
· ·		,				
Peak oil production (bbl)						33,199,970
Peak gas production, net (Mcf) Year						1972

Base of fresh water (ft.): 500


Remarks: Commercial gas deliveries began in January 1963, a/ Results of open-hole tests; zone not open to production.


Selected References: Park, W. H., 1962, Lathrop Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 2.

Teitsworth, R. A., 1964, Geology and Development of the Lathrop Gas Field, San Joaquin County, Calif., in Selected Papers Presented to San Joaquin Geological Society, Vol. 2, p. 19-29.

# LATHROP SOUTHEAST GAS FIELD (Abandoned)

SERIES	FORMATION	TYPICAL ELECTRIC LOG
MIOCENE - PLIOCENE	UNDIFF NONMARIN STRATA	E 5000
~~	GARZAS-AZE BLEWETT (UN	
	RAGGED VALLEY SHALE	4000
UPPER CRETACEOUS	TRACY- SAWTOOT SHALE (UNDIFF)	H \$ 6000
	"E" ZONE SHALE	7000
	LATHROP SANDS	MANATURE MANAGEMENT OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STAT



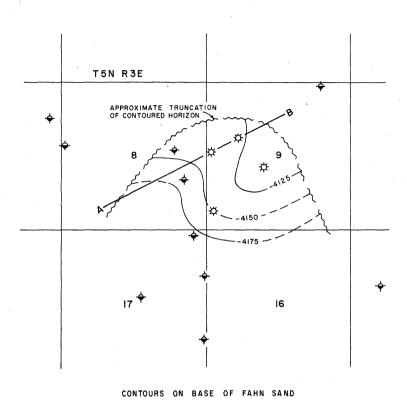


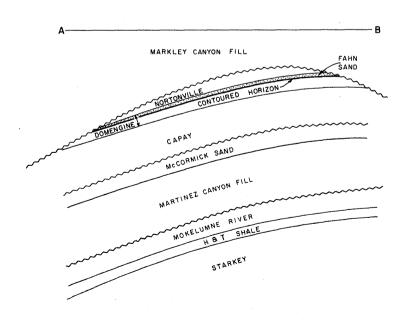
NOVEMBER 1979

### LATHROP, SOUTHEAST, GAS FIELD (ABD)

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	т. г	& R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	E. B. Towne, Oper. "Lathrop Southeast Unit A" 1	Same as present	14	18	6E	MD	8,493	Lathrop	
Deepest well	E. B. Towne, Oper. "Lathrop Southeast Unit A" 3	Same as present	14	15	6E	MD	9,680		Panoche Late Cretaceous


			POOL DATA		
ITEM	LATHROP				FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	November 1967	·			
Gas (Mcf/day)	2,350 1,490 1/4				
pressure (psi)	3,670 154 1,400-1,800			·	
Formation	Panoche Late Cretaceous 7,110 82				
Maximum productive area (acres)	40	·		·	
		RE	SERVOIR ROCK PROPERT	ries	
Porosity (%)	23-27*** 35-40*** 60-65***				
		RE	SERVOIR FLUID PROPERT	ries	
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu, ft.)	.557 tit 1,010				
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	26,200				·
		ENI	IANCED RECOVERY PROJ	JECTS	
Enhanced recovery projects Date started Date discontinued					
	-				
Peak oil production (bbl) Year Peak gas production, net (Mcf)	66,258				
Year	1969				<u> </u>


Base of fresh water (ft.): Above 900

Remarks: Commercial gas deliveries began in July 1969. The field was abandoned in November 1971. Only one well was completed and cumulative gas production was 98,469 Mcf.

# LIBERTY CUT GAS FIELD (Abandoned)

SERIES	FORMATION AND ZONE	COMPOSITE ELECTRIC LOG
MIOCENE TO HOLOCENE	UNDIFF NONMARINE STRATA	My Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Man
OLIGOCENE - MIOCENE	MARKLEY CANYON FILL	
EOCENE	NORTONVILL  FAHN  DOMENGINE  CAPAY	}    {
PALEOCENE	McCORMICK SAND MARTINEZ CANYON FILL	\$5000
UPPER CRETACEOUS	MOKELUMNE RIVER  H & T SHAL	- E-0000





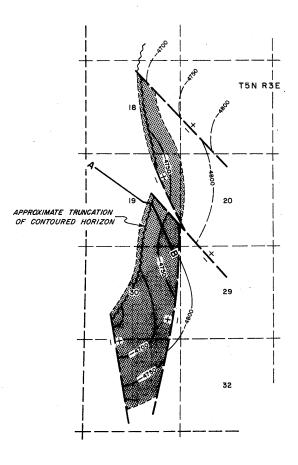
DECEMBER 1979

COUNTY: SOLANO

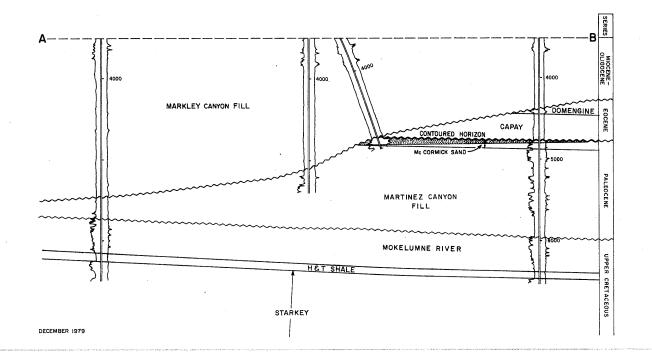
#### LIBERTY CUT GAS FIELD (ABD)

#### **DISCOVERY WELL AND DEEPEST WELL**

		Present operator and well designation	Original operator and well designation	Sec. 1	. & R	. B.&I	Total depth (feet)	Pool (zone)	Strata & age at total depth
I	Discovery well	Arcady Oil Co. "Fahn" 1	Same as present	9 5	N 31	E ME	5,000	Fahn	
	Deepest well	Arcady Oil Co. "Fahn" 5	Same as present	8 5	SN 31	E ME	6,463		Starkey Late Cretaceous


			POOL DATA		
ITEM	UNNAMED	FAHN			FIELD OR AREA DATA
Discovery dateInitial production rates	October 1954	November 1953			
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	1,000 <u>a</u> / 1,100 14/64	2,000 1,500 12/64			
Initial reservoir pressure (psi) Reservoir temperature (°F)	1,770 117	1,820 118			
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation	Nortonville Eccene 4,060 10	950-1,200 Domengine Eccene 4,130			190
area (acres)	***************************************	Pi	SERVOIR ROCK PROPERT	IFC .	190
·		<u> </u>	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		
Porosity (%)	- - -	25-30*** 30-35*** 65-70***			
,		lRI	ESERVOIR FLUID PROPERT	TES	 
Oil: Oil gravity ('API)					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.563†† 996	.563†† 996			
Water: Salinity, NaCl (ppm) T.D.S. (ppm)	9,930	9,930			
		ENI	HANCED RECOVERY PROJ	ECTS	
Enhanced recovery projects Date started Date discontinued					
s					
					,
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					114,677 1957

Base of fresh water (ft.): 2,600


Remarks: Gas production was commingled from both the Fahn zone and unnamed sand stringers in the Nortonville Formation. Commercial gas deliveries began in June 1957. The field was abandoned in October 1965. Four wells were completed and cumulative gas production was 179,030 Mcf.

a/ Gas production was commingled with Fahn zone.

# LIBERTY ISLAND GAS FIELD



CONTOURS ON TOP OF McCORMICK SAND



COUNTY: SOLANO

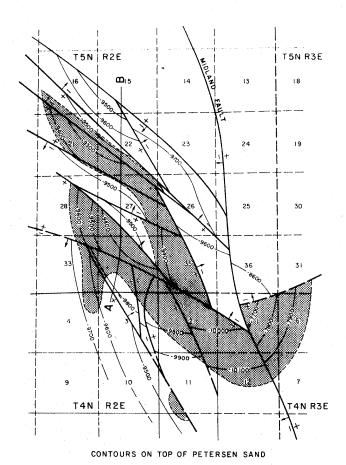
### LIBERTY ISLAND GAS FIELD

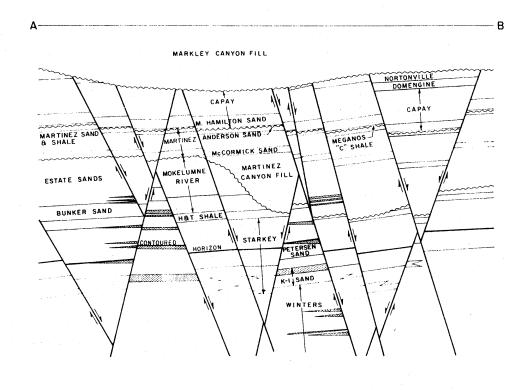
#### **DISCOVERY WELL AND DEEPEST WELL**

		Present operator and well designation	Original operator and well designation	Sec. T. & F	. 8.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
l	Discovery well	Reserve Oil Inc. "Liberty Farms- Reynolds" 2	Reserve Oil and Gas Co. "Liberty Farms- Revnolds" 2	19 5N 3	E MD	6,500	McCormick	
١	Deepest well	Cities Service Co. "Moresco" A-1	Same as present	30 5N 3	E MD	10,011		Confidential

			POOL DATA			
ITEM	McCORMICK					FIELD OR AREA DATA
Discovery date	December 1960 3,900 1,400					
Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (*F)	3/8 2,020 123			. *		
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation Geologic age	920-1,200 Martinez Paleocene 4,725					
Average net thickness (ft.)	30 690					
		, RE	SERVOIR ROCK PROPERT	ries	<b>y</b>	
Porosity (%)	25-30† 35-40† 60-65†					
* .		RE	SERVOIR FLUID PROPER	TIES	<u> </u>	
Oil: Oil gravity (*API)						
GOR (SCF/STB)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.572 986					
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (0hm/m) (77*F)	7,900					
		ENH	IANCED RECOVERY PRO	JECTS		
Enhanced recovery projects Date started Date discontinued			. •			
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	4,948,162 1963					

Base of fresh water (ft.): 2,500-3,350


Remarks: Commercial gas deliveries began in August 1961.


Selected References: Beecroft, G. W., 1961, Liberty Island Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 41, No. 1.

### LINDSEY SLOUGH GAS FIELD

SERIES	FORMATION 8 MEMBER	COMPOSITE ELECTRIC LOG
OLIGOCENE - MIOCENE	MARKLEY CANYON FILL	5000
	NORTONVILLE DOMENGINE	
EOCENE	CAPAY	
	MARGARET HAMILTON SAND MEGANOS "C" SHALE ANDERSON	6000
	SAND WARTINEZ SAND&SH	
PALEOCENE	McCORMICK SAND	7000
PALE	MARTINEZ CANYON FILL	J. May
	ESTATE SANDS BUNKER SAND	And his 8000
	HAT SHALE	
	STARKEY	- k-9000
	PETERSE SAND	)   -}
UPPER CRETACEOUS	K-I SAND	
UPPER		
	WINTERS	11000
		12 000 Park Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard
		J. J. 12000

MAY 1980





COUNTY: SOLANO

#### LINDSEY SLOUGH GAS FIELD Cont.....

#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec.	. T. &	ĿR.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess, Oper. "Union-Pet. Est." 1	Amerada Petroleum Corp. "Petersen" 1	3	4N	2E	MD	10,690	Petersen	
Deepest well	Chevron U.S.A. Inc. "Peter Cook" 16	Standard Oil Co. of Calif. "Peter Cook"	10	4N	2E	MD	15,050		Forbes Late Cretaceous

			POOL DATA			
ITEM	UNNAMED	McCORMICK	ESTATE	1ST STARKEY	2ND STARKEY	FIELD OR AREA DATA
Discovery dateInitial production rates	June 1969	March 1963	November 1964	January 1963	December 1965	
Oil (bbl/day)	1 770	7		7	4.500	
Gas (Mcf/day) Flow pressure (psi)	1,370 1,720	3,120 2,440	1,925 2,900	3,100 2,640	4,500 2,300	
Bean size (in.)	3/16	2,440	3/4	2,040	20/64	
Initial reservoir	3,050	3,120	2,330-3,640	4,070	4,350	
pressure (psi) Reservoir temperature (°F)	148	150	141-177	181	172	
Initial oil content (STB/acft.)		1		1	1	
Initial gas content (MSCF/acft.)	1,100 Martinez	1,300-1,600 Martinez	920-950	930-1,200 Starkey	980- 1,300 Starkey	
Formation	Paleocene	Paleocene	Mokelumne River Late Cretaceous	Late Cretaceous	Late Cretaceous	
Geologic age	6,820	6,975	5,480-8,360	8,700	9,025	
Average net thickness (ft.)	25	82	59	47	65	
Maximum productive area (acres)						3,145
			RESERVOIR ROCK PROPER	TIES		
Porosity (%)	20**	24~28	20-22***	18-22†	18-22†	
Soj (%)	40**	35-40	40-50***	45-50†	45-50†	
Sg; (%)	60**	60-65	50-60***	50-55†	50-55†	
Permeability to air (md)					,	
			RESERVOIR FLUID PROPER	RTIES		L
		T	T	T	T	I
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	1,080	1,080	1,075	1,070	1,080	
Water: Salinity, NaCl (ppm) T.D.S. (ppm)	860	21,000	16,900	19,900	15,400	
R _W (ohm/m) (77°F)						
		Er	NHANCED RECOVERY PRO	DIECTS		
Enhanced recovery projects Date started						
		,				
		<u> </u>				
Peak oil production (bbl)						
Year Ver		ľ	1	í	i	
YearPeak gas production, net (Mcf)						16,065,898 1971

Base of fresh water (ft.): 2,500-3,000

Remarks: Commercial gas deliveries began in October 1964. Cumulative condensate production through 1979 is 638,099 bbl.

COUNTY: SOLANO

#### LINDSEY SLOUGH GAS FIELD .....Cont

#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well							
Deepest well	·		į				

**POOL DATA** 

ITEM	PETERSEN	K-1	FIRST WINTERS	HAMILTON POOL		FIELD OR AREA DATA
Discovery dateInitial production rates	November 1962	July 1963	June 1969	June 1977		
Oil (bbl/day)	8,860 2,570 3/8	2,340 1,440 1/4	4,650 2,640 13/64	3,306 2065 1/4		
pressure (psi)	3,330-4,630 168-175	4,650 180	4,320 170	2,203 155	/	
Initial gas content (MSCF/acft.). Formation Geologic age	1,100-1,200 Starkey Late Cretaceous 7,665-9,940	970-1,300 Starkey Late Cretaceous 10,228 94	790-1,200 Winters Late Cretaceous 9,130 25	Capay Eocene 6,060 30		
		Ri	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	19-23 †	17-21	18-22†	,		
Swi (%)	45-50 † 50-55 †	45-50 50-55 3-8	50-60 † 40-50 †			
		RE	SERVOIR FLUID PROPERT	TIES		
Oil: Oil gravity (*API)						

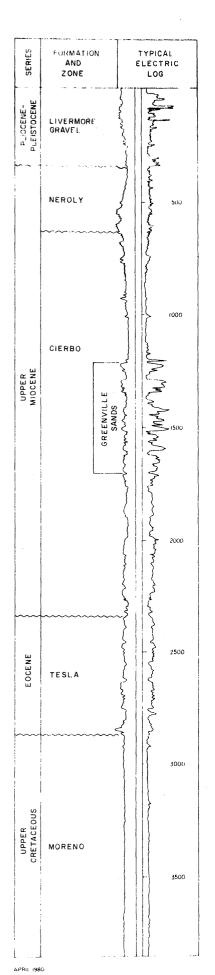
ı		·	1	i '			
	Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	16,950	17,000	1,370			
			ENH	IANCED RECOVERY PROJ	ECTS	-	
	Enhanced recovery projects Date started Date discontinued						
			,		į.		
							-
	Peak oil production (bbl) Year Peak gas production, net (Mcf) Year				·		

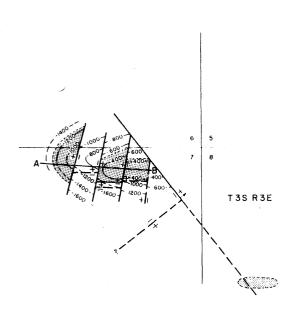
1,080

.620 1085

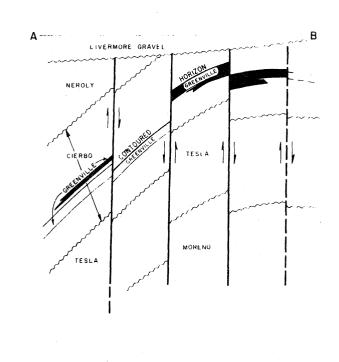
Base of fresh water (ft.):

Gas:
Specific gravity (air = 1.0)......
Heating value (Btu/cu. ft.).....


1,080


1,070

Remarks:


DATE:

### LIVERMORE OIL FIELD





CONTOURS ON TOP OF GREENVILLE SANDS



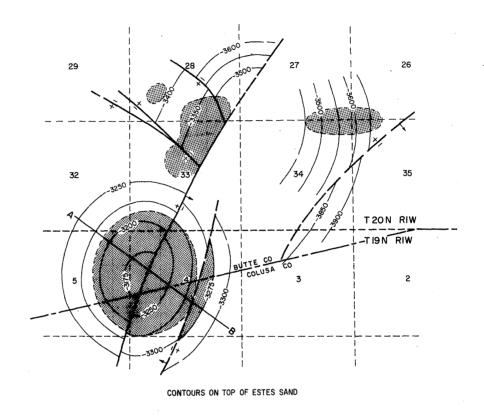
LIVERMORE OIL FIELD

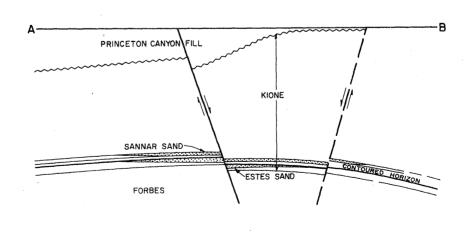
COUNTY: ALAMEDA

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Onginal operation and the second	Sec	. т.		В.&М.	(icet)	Pool (zone)	Strata & age at total depth
Discovery well	Groun! 1	"Greenvile Investment Group" 1		38		1	2,173	Greenville	Moreno
Deepest well	Hershey Oil Corp. "Nissen" 3	McCulloch Oil Corp. of California "Nissen" 3	8	35	3E	MD	6,819		Late Cretaceous

POOL DATA	A	١
-----------	---	---


•			POOL DATA		_				
ITEM	GREENVILLE	TESLA				FIELD OR AREA DATA			
Discovery date	January 1967 397	October 1967 40				,			
Bean size (in.)	104 1,200 Cierbo Late Miocene 900-2,000 40-250	142 Tesla Eocene 5,300 35				110			
		R	ESERVOIR ROCK PROPERT	TES					
Porosity (%)	26 65 35 250	23 40-45 55-60							
	RESERVOIR FLUID PROPERTIES								
Oil: Oil gravity (*API)	21-25 115 1.07	29 - -							
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)									
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	3,400-9,400	9,400							
		EN	HANCED RECOVERY PRO	JECTS		,			
Enhanced recovery projects Date started Date discontinued									
		*							
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						161,829 1969			


Base of fresh water (ft.): 200

Remarks: Cumulative oil production from the Tesla Formation was 1,670 barrels. One well was completed in October 1967 and abandoned in March 1969.

# LLANO SECO GAS FIELD

SERIES	FORMATION AND ZONE	TYPICAL ELECTRIC LOG
POST-EOCENE	UNDIFF NONMARINE STRATA	
~~	UNDIFF MARINE STRATA	~
EOCENE	PRINCETON CANYON FILL	
UPPER CRETACEOUS	KIONE  SANNAR SAND  ESTES SAND	Swarphill Will Will Will Mill Will Mander Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control o
	DOBBINS	
	GUINDA	
	FUNKS	





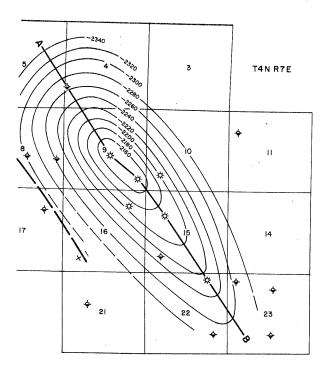
**LLANO SECO GAS FIELD** 

COUNTY: BUTTE and GLENN

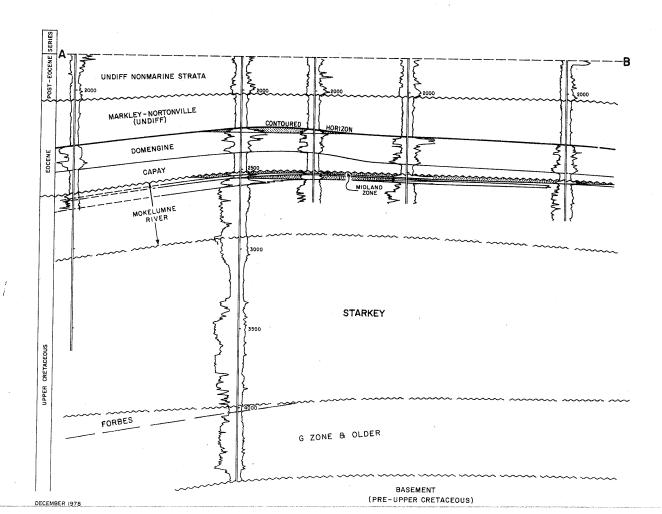
#### **DISCOVERY WELL AND DEEPEST WELL**

		Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
l	Discovery well	Exxon Corp. "Parrott Inv. Co." 2	Humble Oil & Rfg. Co. "Parrott Inv. Co." 2	4 19N 1W	MD	6,700	Sannar-Estes	
	Deepest well	Mobil Oil Corp. "Llano Seco" 1	General Petroleum Corp. "Llano Seco" 1	33 20N 1W	MD	8,306		Funks Late Cretaceous

			POOL DATA			
ITEM	UNNAMED	SANNAR -ESTES	UNNAMED			FIELD OR AREA DATA
Discovery dateInitial production rates	December 1961	November 1954	October 1961			
Oil (bbl/day)	3,300 605	4,030 <u>a/</u> 1,600 3/8	4,000 <u>b</u> / 1,170 3/8			
Initial reservoir  pressure (psi)		1,494-1,762 96	2,086-2,686 103-110			
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation	370 undiff. marine strata Eocene	980-1,100 Kione Late Cretaceous	1,200-1,300 Forbes Late Cretaceous			
Geologic age	1,600	3,275 17	4,550-5,200 5-20			
area (acres)			ESERVOIR ROCK PROPERT	TIFE .		655
	1		ESERVOIR ROCK PROPERI	ILES	· · · · · · · · · · · · · · · · · · ·	
Porosity (%)		26-32*** 30-35***	22-28*** 35-40***			
Swi (%) Sgi (%) Permeability to air (md)	65*	65-70***	60-65***			
		R	ESERVOIR FLUID PROPERT	TIES		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.570 975	.580 960	.570 975			
Water: Salinity, NaCl (ppm) T.D.S. (ppm)	1	4,100	8,200			
R _w (ohm/m) (77°F)						
		EN	HANCED RECOVERY PRO	T		
Enhanced recovery projects Date started Date discontinued	.	·				
		,				
Peak oil production (bbl) YearPeak gas production, net (Mcf)	•				,	1,207,199 1957
Year	•					1331


Base of fresh water (ft.): 1,300

Remarks: Commercial gas deliveries began in July 1957.


a/ Production from Sannar and Estes zones commingled in discovery well.

b/ Open-hole formation test.

# LODI GAS FIELD (Abandoned)



CONTOURS ON TOP OF DOMENGINE



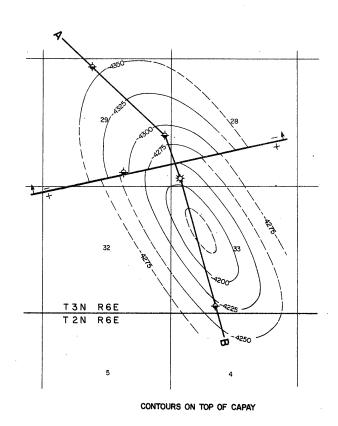
**LODI GAS FIELD** (ABD)

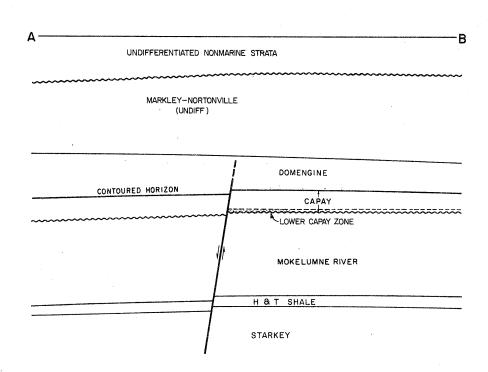
#### **DISCOVERY WELL AND DEEPEST WELL**

		Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Ī	Discovery well	Amerada Hess Corp., Unit Oper. "LGZU" 101	Amerada Petroleum Corp. "Community 9" 1	9 4N 7E	MD	4,471	Domengine	
l	Deepest well	Amerada Hess Corp., Unit Oper. "LGZU" 201	Amerada Petroleum Corp. "Community 10" 1	10 4N 7E	MD	4,495		basement pre-Lt. Cret.

			POOL DATA		
ITEM	DOMENGINE	MIDLAND			FIELD OR Area data
Discovery date Initial production rates Oil (bbl/day)	April 1943	March 1953			
Gas (Mcf/day)	7,222 355 1/2	2,800 906 3/8			
pressure (psi)	987 92 800	1,093 93 580~750			
Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.)	Domengine Eocene 2,280	Mokelumne River Late Cretaceous 2,515			
Average net thickness (ft.)	25	35			1,450
		RI	SERVOIR ROCK PROPERT	TIES	
Porosity (%)	25-30 25	25-30*** 25-30***			
Sgi (%)	75	70-75***	140040000000000000000000000000000000000		
		RI	SERVOIR FLUID PROPERT	ries ·	
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.663†† 750	.683†† 700			
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	1,883	3,424			
		ENI	HANCED RECOVERY PRO	IECTS	
Enhanced recovery projects Date started Date discontinued					
		,		-	
Peak oil production (bbl) Year					1,301,472
Peak gas production, net (Mcf) Year					1947

Base of fresh water (ft.): 1,700


Remarks: Commercial gas deliveries began in October 1946 and ceased in January 1971. The field was abandoned in March 1972. Six wells were completed and cumulative gas production was 23,204,145 Mcf.


Selected References: Huey, W. F., 1957, Lodi Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 43, No. 1.

### LODI AIRPORT GAS FIELD

(Abandoned)

	SERIES	FORMATION	T El	YPICAL LECTRIC LOG
1	POST - EOCENE	UNDIFF NONMARINE STRATA	John John Mary Brother Ball Lafe	2000
		MARKLEY – NORTONVILLE (UNDIFF)	Joseph L. M. M. M. M. M. M. M. M. M. M. M. M. M.	3000
	EOCENE			
		DOMENGINE	14 A A A A	4000
		MOKELUMNE RIVER	The work of the second	5000
	EOUS	H & T SHALE		
	UPPER CRETACEOUS	STARKEY .	The formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the formula of the fo	6000
				7000



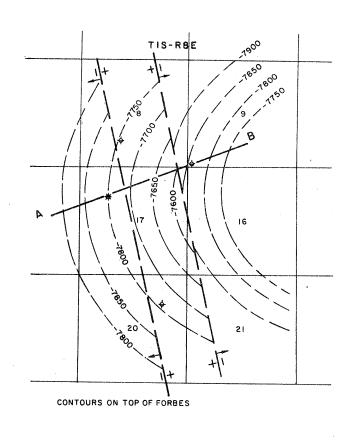


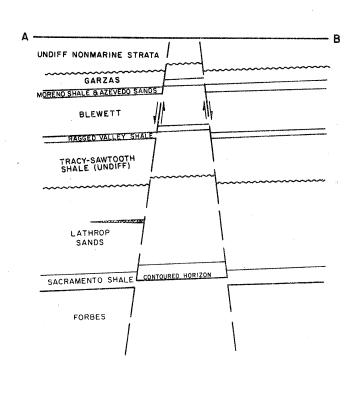
JULY 1978

#### **LODI AIRPORT GAS FIELD** (ABD)

#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec.	т. ғ	& R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Great Basins Petroleum Co. "Phillips Olagaray" 1	Same as present	28	3N	6E	MD	7,040	Capay	Starkey Late Cretaceous
Deepest well	Same as above			11		"	"	"	"


			DOOL DATA		
Г	· · · · · · · · · · · · · · · · · · ·		POOL DATA		 FIELD OR
ITEM	CAPAY				AREA DATA
Discovery date	July 1976 3,560				
Flow pressure (psi)	1,425 20/64 1,920 123	÷	·		
Reservoir temperature (°F)	1,200 Capay Eocene 4,440 10				
Maximum productive area (acres)	40				
		RE	SERVOIR ROCK PROPERT	ries	
Porosity (%)	30**				
Soj (%)	30** 70**				
		RE	SERVOIR FLUID PROPER	TIES	
Oil: Oil gravity (*AP!)	·				
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.611 882				
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _w (ohm/m) (77°F)					
`		ENI	IANCED RECOVERY PRO	JECTS	
Enhanced recovery projects Date started Date discontinued					
		,			
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	10,134 1978				


Base of fresh water (ft.): 700

Remarks: Commercial gas deliveries began in June 1978. The field was abandoned in May 1979. Only one well was completed and cumulative gas production was 10,134 Mcf.

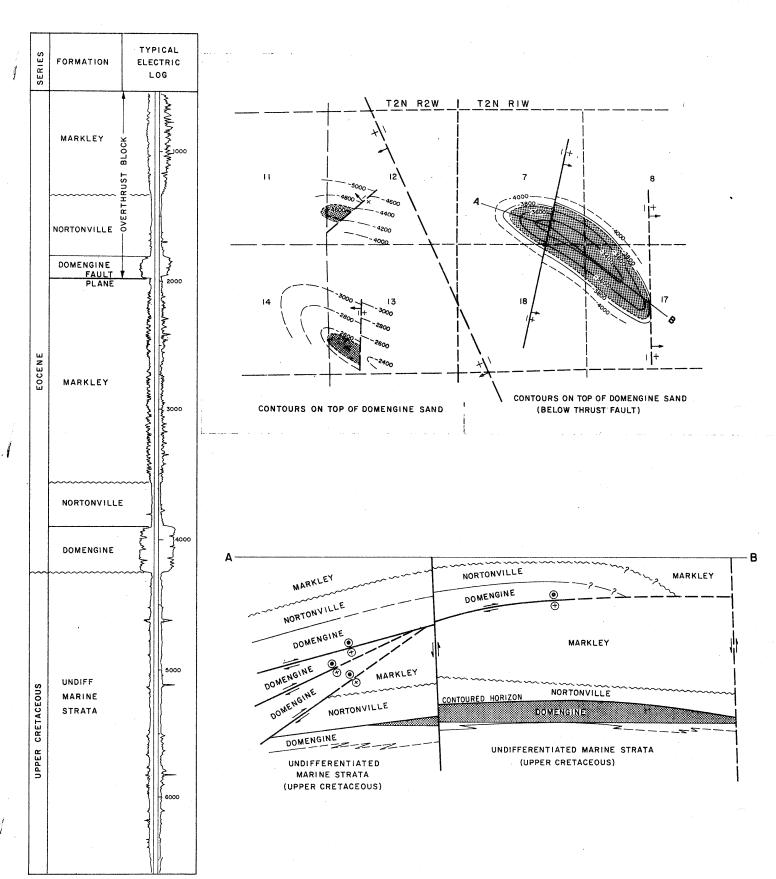
# LONE TREE CREEK GAS FIELD

SERIES	FORMATION AND MEMBER	TYPICAL ELECTRIC LOG
MIO-PLIOCENE	UNDIFF NONMARINE STRATA	2000
A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR	GARZAS	
	MORENO SHA AZEVEDO SA (UNDIFF)	NDS - 3000
	BLEWETT	4000 - 4000
	RAGGED VALI	LEY
UPPER CRETACEOUS	TRACY-SAWTOO SHALE (UNDI	OTH { } }
UPPER C		6000
	LATHROP SAN	
	SACRAMENT SHALE	D
	FORBES	-/8000





### LONE TREE CREEK GAS FIELD


#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec	. T. 8	& R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Texaco Inc. "Vieira" 1	Same as present	17	18	8E	MD	9,800	Lathrop	Forbes Late Cretaceous
Deepest well	Same as above	11 · · ·		"		"	11	"	"

			POOL DATA			
ITEM	LATHROP				VIV. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (1971) 1. (	FIELD OR AREA DATA
Discovery date	May 1978 1,644 1,960 3/16					
Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/ac-ft.) Initial gas content (MSCF/ac-ft.). Formation	3,180 131 880 Lathrop					
Geologic age	Late Cretaceous 6,800 10	* 1 .				
		RI	SERVOIR ROCK PROPER	TIES		
Porosity (%)	20† 50** 50**					
		RI	SERVOIR FLUID PROPER	TIES		
Oil: Oil gravity ("API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.623 831					
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)		:				
		ENI	IANCED RECOVERY PRO	IECTS	<u>i</u>	
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						-

Base of fresh water (ft.): 1,250

Remarks: Commercial gas deliveries have not yet begun.

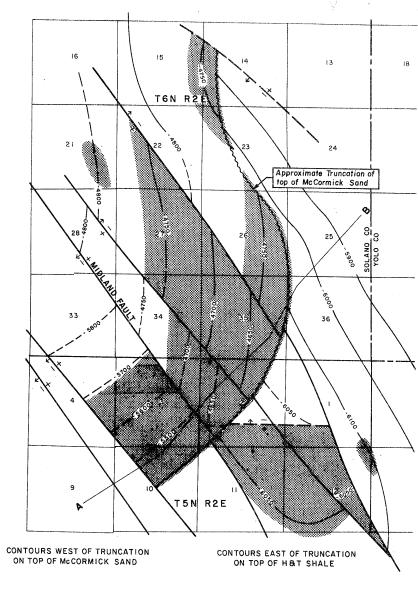


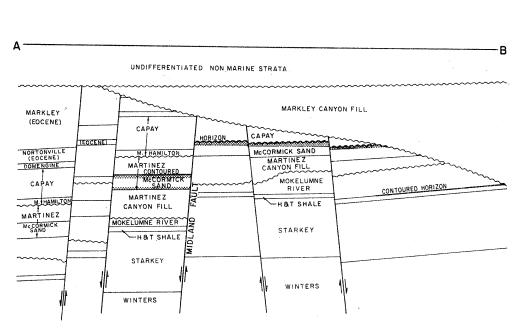
DECEMBER 1979

#### **DISCOVERY WELL AND DEEPEST WELL**

		Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Į	Discovery well	Pacific Gas and Electric Co. "Ginochio"	McCulloch Oil Corp. of Calif. "McCulloch- Macson-Ginochio" 1	18 2N 1W	MD	3,021	Domengine	
	Deepest well	Pacific Gas and Electric Co. "Ginochio" 3-7	McCulloch Oil Corp. of Calif. "McCulloch- Ginochio" 3	7 2N 1W	MD	6,941		undiff. marine Late Cretaceous

#### **POOL DATA**


			POOL DATA							
ITEM	NORTONVILLE	DOMENGINE	UPPER CRETACEOUS			FIELD OR AREA DATA				
Discovery date	June 1959	May 1958	April 1962							
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	1,500 425 3/8	1,600 425 24/64	690 820 3/16							
Initial reservoir pressure (psi)	1,665 114	1,760 112	1,570							
Initial gas content (MSCF/acft.). Formation	900 Nortonville Eccene 4,300 40	1,300 Domengine Eocene 4,000 150	Upper Cretaceous Late Cretaceous 2,800							
area (acres)	——————————————————————————————————————		ECENTAIN DOCK BROWN	Ture		390				
		. к	ESERVOIR ROCK PROPER	Tites	Γ					
Porosity (%)	26 35 65	30 22 78								
Permeability to air (md)	-	500								
	RESERVOIR FLUID PROPERTIES									
Oil: Oil gravity (*API)										
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	1,020	1,020	975							
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)		10,800	-							
		EN	HANCED RECOVERY PRO	JECTS						
Enhanced recovery projects Date started Date discontinued										
		÷								
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						5,033,197 1961				


Base of fresh water (ft.): 150-1,000

Remarks: Commercial gas deliveries began in November 1958. One well was completed in the Upper Cretaceous zone; it was abandoned in December 1962. Pacific Gas and Electric Co. acquired the field in September 1975 and converted it to gas storage. The working gas storage capacity is 15,400,000 Mcf with an approximate maximum withdrawl rate of 230,000 Mcf/day.

Selected References: Matthews, J. F., Jr., 1963, Los Medanos Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 49, No. 1.

# MAINE PRAIRIE GAS FIELD





COUNTY: SOLANO

#### MAINE PRAIRIE GAS FIELD Cont.....

FIELD OR

#### **DISCOVERY WELL AND DEEPEST WELL**

		Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
l	Discovery well	Amerada Hess Corp. "WZU" 4	Amerada Petroleum Corp. "I. & L. Wineman"	26 6N 2E	MD	5,000	Wineman	
	Deepest well	Atlantic Oil Co. "Moresco Brothers" 1	Same as present	12 5N 2E	MD	9,834 <u>a</u>	<i>!</i>	Winters Late Cretaceous

**POOL DATA** 

ITEM	DOMENGINE <u>b</u> /	WINEMAN <u>b</u> /	UNNAMED 5/	PETERS <u>C</u> /	BUNKER <u>b</u> /	FIELD OR AREA DATA
Discovery date	2,560 1,600 1/4 1,790 112 630-900 Domengine Eocene 4,150	March 1945  19,000 1,760 3/4  2,135 116  990-1,300 Martinez Paleocene 4,740 40	January 1960  2,420 1,470 10/64  2,560 129  1,100-1,500 Martinez Paleocene 5,935 20	July 1956  2,140 2,420 13/64  2,880 135  1,200-1,500 Mokelumme River Late Cretaceous 6,440 60	October 1951  11,500 1,850 3/8 2,535 128 1,400-1,800 Mokelumme River Late Cretaceous 5,740 355	
Average net thickness (ft.)	*		ESERVOIR ROCK PROPERT			2,410

	RESERVOIR FLUID PROPERTIES										
Soj (%)		35-40† 60-65† -	35-40*** 60-65*** 8-80	35-40**** 60-65****	30-35 65-70 -						
Porosity (%)	20-261	24-291	24-26	22-20	27 31	İ					

Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.562 1,005	.590†† 1,020	.613 1,075	.610†† 1,065	.620†† 1,080	
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	-	5,992	685	17,120	68	

T.D.S. (ppm) R _W (ohm/m) (77°F)				
Enhanced recovery projects	ENH	IANCED RECOVERY PROJ	ECTS	

Peak oil production (bbl)			
Peak oil production (bbl) YearPeak gas production, net (Mcf) Year			8,924,860 1971

Base of fresh water (ft.): 2,700

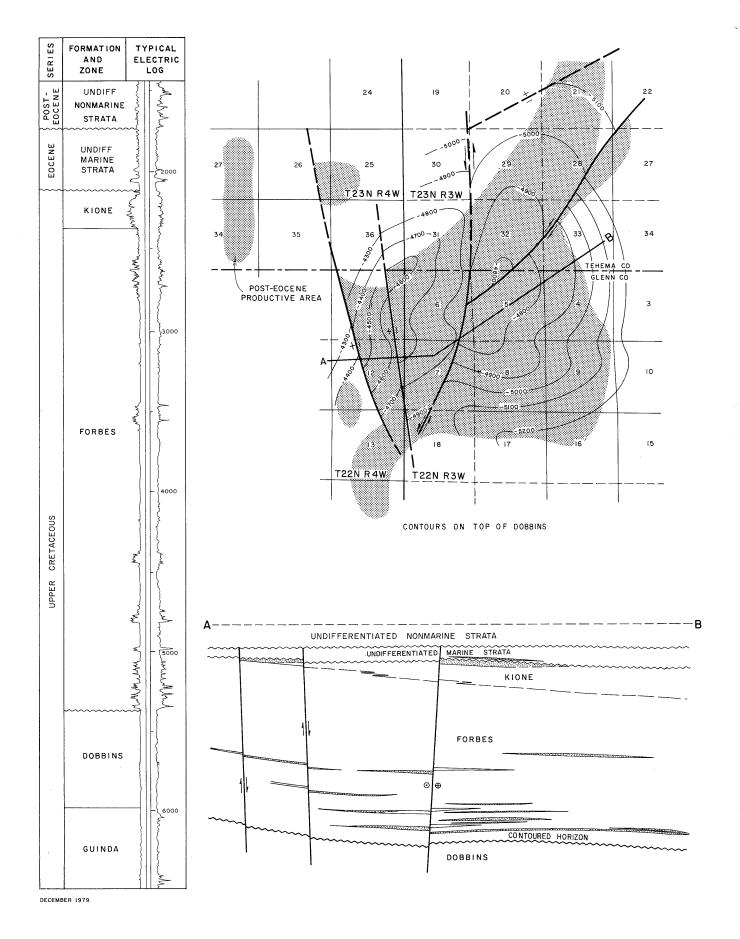
Remarks: Formerly known as Duck Slough Gas area. 1979 condensate production was 3,887 barrels; cumulative condensate production was 164,118 barrels. Commercial gas deliveries began in July 1947.

- a/ Directional well, true vertical depth is 9,448 feet.
  b/ East of Midland fault.
  c/ West of Midland fault.

COUNTY: SOLANO

#### MAINE PRAIRIE GAS FIELD .....Cont

#### DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well							
Deepest well							

			POOL DATA			
ITEM	H & T SAND ₺/	winters <u>b</u> /				FIELD OR AREA DATA
Discovery date	December 1951	December 1974				
Oil (bbl/day)	5,200 2,090	1,200				
Bean size (in.)nitial reservoir pressure (psi)	5/16 2,695	3,950		·		
eservoir temperature (°F) nitial oil content (STB/acft.) nitial gas content (MSCF/acft.).	131 1,500-1,800	165 870-1,200				
ormation	Starkey Late Cretaceous 6,160 25	Winters Late Cretaceous 8,300 30				
Aaximum productive area (acres)						
			ESERVOIR ROCK PROPER	ries		
orosity (%)	27-30	18-22†				
wi (%) gi (%)ermeability to air (md)	30-35 65-70	50-55† 45-50†				-
		Į.	ESERVOIR FLUID PROPER	ries	I	
oil: Oil gravity (°API)						
as: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.613 1,075	.636 983				
/ater: Salinity, NaCl (ppm) T.D.S. (ppm)	14,466	-				
R _W (ohm/m) (77°F)		FN	HANCED RECOVERY PRO	IFCTS		
nhanced recovery projects Date started						
Date discontinued						
		,				
eak oil production (bbl) Year						
eak gas production, net (Mcf)						

Base of fresh water (ft.):

Remarks:  $\underline{b}/ \quad \text{East of Midland fault.}$ 

#### MALTON-BLACK BUTTE GAS FIELD

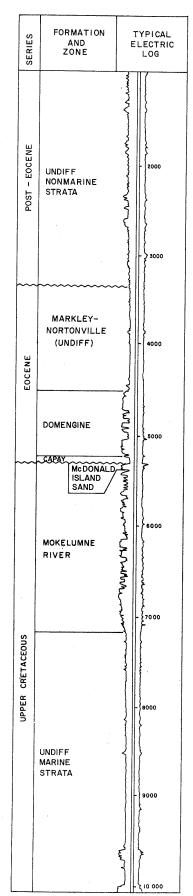


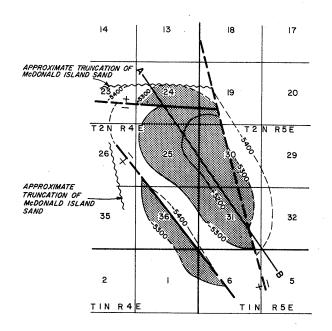
#### COUNTY: GLENN and TEHAMA

#### **DISCOVERY WELL AND DEEPEST WELL**

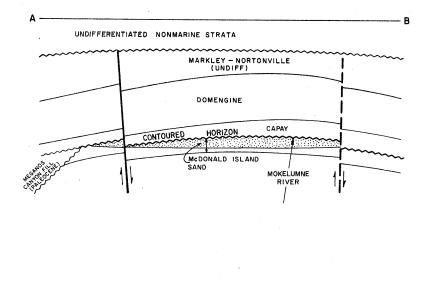
	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery weil	Exxon Corp. "H-T Malton Unit 1" 1	Humble Oil & Refining Co. "H-T Malton Unit 1" 1	5 22N 3W	MD	5,480	Forbes	
Deepest well	Bender Oil Operations "Bryan" 1		33 23N 3W	MD	6,692		Guinda Late Cretaceous

DΩ	OL	n	Δ	-r 4	
PU	L JL	.,	м	1 /	•


			POOL DATA			riri D. O.D.
ITEM	ТЕНАМА	UNDIFF. MARINE STRATA	KIONE	FORBES		FIELD OR AREA DATA
Discovery dateInitial production rates	September 1975	January 1969	December 1966	October 1964		
Oil (bbl/day)Gas (Mcf/day)	1,436	1,070 <u>a</u> /	1,500	1,740 & 1,250 b/		
Flow pressure (psi)		1,070 =	730	1,480-750	. 1	
Bean size (in.)		1/4	12/64	17/64-3/8		
Initial reservoir		760	860	1,580-2,940		
pressure (psi)	592	89	89-93	100-125		
Reservoir temperature (°F)	90		1			
Initial oil content (STB/acft.)	220-350	280-460	400-490	640-770		
Initial gas content (MSCF/acft.). Formation		undiff. marine	Kione	Forbes		
Geologic age		Eocene	Late Cretaceous	Late Cretaceous		•
Average depth (ft.)		1,900	1,900-2,200	3,250-4,950		
Average net thickness (ft.)	70	10	50	5-40		
Maximum productive		· ·				
area (acres)						9,350
		1	ESERVOIR ROCK PROPER	PTIES	L	
				T		
Porosity (%)		20-30	25-28 †	18-25		
Swi (%)	30-35	35-40 **	35-40 †	40-50		
Sgi (%)	65-70	60-65 **	60-65 †	50-60		
Permeability to air (md)	-	-	-	100-1,200		
		l P	LESERVOIR FLUID PROPER	PTIFS		
		T		T		
Oil: Oil gravity (°API)Sulfur content (% by wt.)				·		
Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB)Bubble point press. (psia)	. }					
Viscosity (cp) @ °F						
Gas: Specific gravity (air = 1.0)	.557	.557	.557	.557		
Heating value (Btu/cu. ft.)		1,010	1,010	1,010		
Water: Salinity, NaCl (ppm)		-	18,000	21,600		
T.D.S. (ppm) R _w (ohm/m) (77°F)						
		EN	HANCED RECOVERY PRO	DJECTS	<u> </u>	
Enhanced recovery projects						
Date started Date discontinued	•					
		,				
AND THE RESERVE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF						
Peak oil production (bbl)						
Year Peak gas production, net (Mcf)	"					8,796,345 1972
Year	•		<u> </u>			10.2


Base of fresh water (ft.): 1,500-1,800

Remarks: Commercial gas deliveries began in December 1966.


a/ Commingled with production from the Kione formation.  $\overline{b}$ / Completed from two intervals in the Forbes Formation.

# McDONALD ISLAND GAS FIELD





CONTOURS ON TOP OF McDONALD ISLAND SAND



DECEMBER 1979

#### McDONALD ISLAND GAS FIELD

#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec.	т. 8	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Pacific Gas and Electric Co. "McDonald	Standard Oil Co. of Calif. "McDonald Island Farms" 1	25	2N	4E	MD	5,227	McDonald Island	
Deepest well	Island Farms" 1 Union Oil Co. of Calif. "McDonald Island"	Same as present	24	2N	4E	MD	12,502		undiff. marine Late Cretaceous

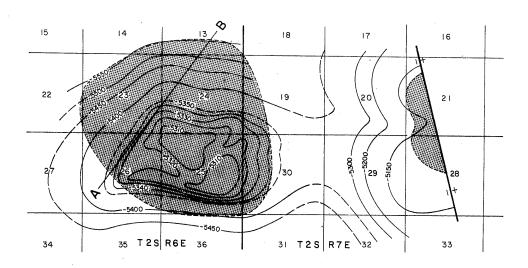
						Date Officerous
	,		POOL DATA	- Т		EIELD OD
ITEM ·	McDONALD ISLAND					FIELD OR AREA DATA
Discovery dateInitial production rates	May 1936					
Oil (bbl/day)	26,650					
Gas (Mcf/day) Flow pressure (psi)	2,080					
Bean size (in.)	3/4				ļ	
Initial reservoir						
pressure (psi) Reservoir temperature (°F)	2,350 142			,		
Initial oil content (STB/acft.)	142	•				
Initial gas content (MSCF/acft.).	1,700					
Formation	Mokelumne River				·	
Geologic ageAverage depth (ft.)	Late Cretaceous 5,220					
Average net thickness (ft.)	45	'				
Maximum productive						
area (acres)	2,140					
		RE	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	31-34					
Soj (%)						
Swi (%)	25					
Sgi (%)	75 1,500	,				
Permeability to air (md)	1,500					
		RE	SERVOIR FLUID PROPERT	ries		
Oil:						
Oil gravity (°API)Sulfur content (% by wt.) Initial solution						
GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ °F						
Gas:	.61					
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	1,067					
-						
Water:	12,000					
Salinity, NaCl (ppm) T.D.S. (ppm)	12,000					
R _W (ohm/m) (77°F)						
		ENF	IANCED RECOVERY PRO	JECTS	<u> </u>	k
F.L						
Enhanced recovery projects  Date started	1					
Date discontinued						1
		'				
		,				
		,				
						<b>_</b>
Peak oil production (bbl)						
Year						
Peak gas production, net (Mcf)	15,062,989 1972					
Year	19/4					L

Base of fresh water (ft.): 50-100

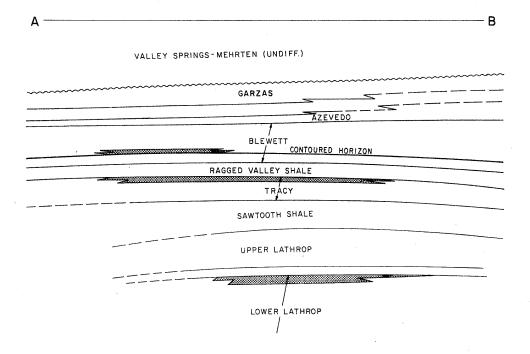
Remarks: Commercial gas deliveries began in April 1937. Pacific Gas & Electric Co. acquired the field in December 1958 and converted it to gas storage in August 1959. The working gas storage capacity is 82,600,000 Mcf with an approximate maximum withdrawl rate of 1,140,000 Mcf/day.

Selected References:

Knox, G. L., 1943, McDonald Island Gas Field in Geologic Formations and Economic Development of the Oil and Gas Fields of Calif.:


Calif. Div. of Mines Bull. 118, p. 588-590.

Railroad Commission of the State of Calif. and Calif. Div. of Oil and Gas, McDonald Gas Field in Estimate of the Natural Gas Reserves of the State of Calif. as of January 1, 1946: Case No. 4591, Special Study No. S-525, p. 40-42 (1946).


# McMULLIN RANCH GAS FIELD

SERIES	FORMATION	MEMBER 8. ZONE		YPICAL ECTRIC LOG
MIOCENE - PLIOCENE	VALLEY SPRINGS-MEHRTEN (UNDIFF)		} 	3000
	MORENO	GARZAS		4000
	Σ	AZEVEDO	-{	}
		BLEWETT	المراسمين المراسم	5000
		CONTOURED HORIZON	—	<b>k</b>
		RAGGED VALLE SHALE		{ } { }
1		TRACY	AL CAL	}
UPPER CRETACEOUS	сне	SAWTOOTH SHALE		7000
UPP	PANOCHE	UPPER LATHROP	7	8000
		LOWER LATHROP	man John William Change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change and a second change an	المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة المستركة الم

MARCH 1980



CONTOURS ON BLEWETT ELECTRIC LOG MARKER

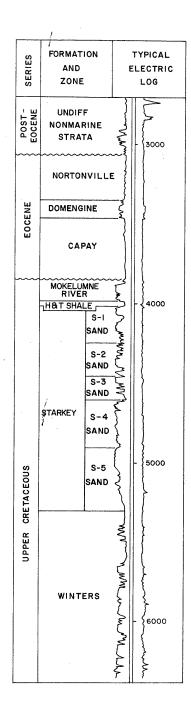


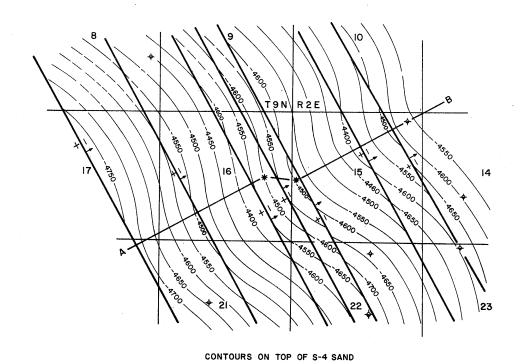
#### MCMULLIN RANCH GAS FIELD

#### **DISCOVERY WELL AND DEEPEST WELL**

		Present operator and well designation	Original operator and well designation	Sec.	т. 8	k R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
ı	Discovery well	Great Basins Petroleum Co. "Signet-	Same as present	25	2S	6E	MD	6,350	Blewett	
	•	Perrin" 33-25 Great Basins Petroleum Co. "Occidental- Whiting" 66X-23	Same as present	23	25	6E	MD	9,988		Panoche Late Cretaceous

POOL D	A	Α
--------	---	---


			POOL DATA			
ITEM	BLEWETT	TRACY	E-ZONE			FIELD OR AREA DATA
Discovery dateInitial production rates	May 1960	May 1960	June 1963			
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi)	6,020 1,725 3/8	2,740 775 3/8	5,200 2,260 5/16			
Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (°F)	2,415 140	2,900 140	3,625-4,120 172	·		
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation	1,200-1,500 Panoche Late Cretaceous	1,400-1,800 Panoche Late Cretaceous	1,400-1,600 Panoche Late Cretaceous			
Geologic age	4,525 2-30	6,005 2-15	7,200 3-30			3,030
area (acres)		R	ESERVOIR ROCK PROPER	TIES		
Porosity (%)	26-30	26-30	23-27***			
So; (%)	30-35 65-70 597	30-35 65-70 117	35-40 *** 60-65 ***			
		R	ESERVOIR FLUID PROPER	TIES		
Oil: Oil gravity ("API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.610†† 895	.610†† 895	.620†† 870			· · · · · · · · · · · · · · · · · · ·
Water: Salinity, NaCl (ppm) T.D.S. (ppm)	10,200	7,900	12,000-23,300			
R _W (ohm/m) (77°F)		EN	HANCED RECOVERY PRO	DIECTS		
Enhanced recovery projects Date started Date discontinued					,	
						a.
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						10,790,606 1965

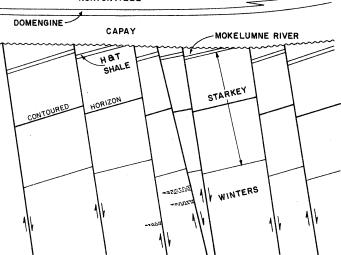

Base of fresh water (ft.): Above 500

Remarks: Dual completions from the Blewett and Tracy zones are common. Gas production from sand strings in the lower portion of the "Ragged Valley" is often commingled with Tracy zone production and considered part of the zone.

Selected References: Hunter, W. J., and Beecroft, G. W., 1960, McMullin Ranch Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 46, No. 2.

#### MERRITT GAS FIELD






NORTONVILLE

DOMENGINE

CAPAY

MOKELUMNE RIVER



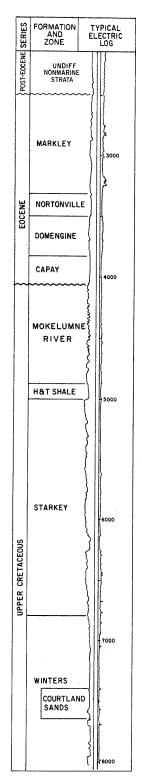
NOVEMBER 1979

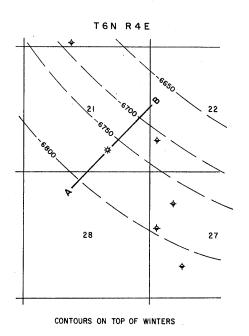
COUNTY: YOLO

#### **MERRITT GAS FIELD**

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Russell" 1-15	Same as present	15	9N	2E	MD	6,712 <u>a</u> /	Winters	
Deepest well	Texaco, Inc. "Transamerica" 1-16	Same as present	16	9N	2E	MD	6,800		Winters Late Cretaceous


		D		


			POOL DATA			FIFT D. O.D.
ITEM	WINTERS			-		FIELD OR AREA DATA
Discovery date	November 1974					
Initial production rates	•	'		1		
Oil (bbl/day) Gas (Mcf/day)	17,500					
Flow pressure (psi)	17,000					
Bean size (in.)						
Initial reservoir pressure (psi)	2,500					
Reservoir temperature (°F)	120					
Initial oil content (STB/acft.)	960-1,200					
Initial gas content (MSCF/acft.).	Winters					
Geologic age	Late Cretaceous					
Average depth (ft.)	5,550 15					
Maximum productive	13					
area (acres)	160					
		RE	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	25-29†					
Soj (%)						
Swi (%)	45-50 †					
Sgi (%) Permeability to air (md)	50-55†					
remeability to all (mg)						
		RE	SERVOIR FLUID PROPERT	TIES		
Oil:						
Oil gravity (°API)						
Sulfur content (% by wt.) Initial solution	. 1					
GOR (SCF/STB)						
Initial oil FVF (RB/STB)	1					
Bubble point press. (psia) Viscosity (cp) @ °F	,					
viscosity (cp) @ r	İ					
Gas:						·
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	910			ļ		
rieating value (btu/cu. it.)	310					
Water:						
Salinity, NaCl (ppm) T.D.S. (ppm)						ļ
R _W (ohm/m) (77°F)						
		Fait	IANCED RECOVERY PRO	I CTE		L
		ENF	TANCED RECOVERT PRO	T		İ
Enhanced recovery projects						
Date started	•					
Jate discontillated	1				1	
		,				
					İ	
		,				,
		1				
					1	
				,		
			-			
Peak oil production (bbl) Year	.]			1	1	
Peak gas production, net (Mcf)	415,534					
Year	. 1979				1	
	<del></del>	<u> </u>	J		······································	

Base of fresh water (ft.): 2,230

Remarks: Commerical gas deliveries began in February 1977 a/ Directional well, true vertical depth is 6,703 feet.

### MERRITT ISLAND GAS FIELD





мон	ELUMNE	RIVER	
	нат	SHALE	
	STAF	RKEY	
CONTOURED	HORIZON		<del></del>
			WINTERS
AND SANDS	oortoooxxxxXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
		STAI	STARKEY  CONTOURED HORIZON

DECEMBER 1979

COUNTY: SACRAMENTO and YOLO

#### **MERRITT ISLAND GAS FIELD**

#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec.	T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Union Oil Company of California "Greene Unit" 2	Same as present	21	6N	4E	MD	8,000	Courtland	Winters Late Cretaceous
Deepest well	Same as above	"		"		"	"	"	. "

oo		Ά

•			POOL DATA		
ITEM	COURTLAND				FIELD OR AREA DATA
Discovery date	April 1966 6,000 2,600 16/64	:			
Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.).	3,450 136 980-1,300				
Geologic age Average depth (ft.)  Average at thickness (ft.)  Maximum productive area (acres)	Winters Late Cretaceous 7,400 15				
		RE	SERVOIR ROCK PROPER	TIES	
Porosity (%)	20-26 *** 45-50 *** 50-55 ***				
	-	RE	SERVOIR FLUID PROPER	TIES	
Oil: Oil gravity (°API)					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.594†† 930			7	
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	3,100				
		ENI	IANCED RECOVERY PRO	JECTS	
Enhanced recovery projects Date started Date discontinued					
	·				
		,			
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	388,931 1971				

Base of fresh water (ft.): 1,600

Remarks: Commercial gas deliveries began in June 1971. The field was abandoned in June 1974. One well was completed and cumulative production was 677,643 Mcf gas and 127 barrels condensate.

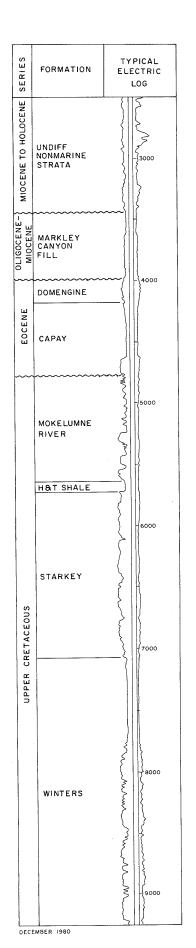
During December 1980, well Anchor Petroleum Inc. "Hudson" 1 was apparently completed from the interval 7507-7510 feet (true vertical depth is 7489-7492 feet) opposite the Winters formation (Late Cretaceous).

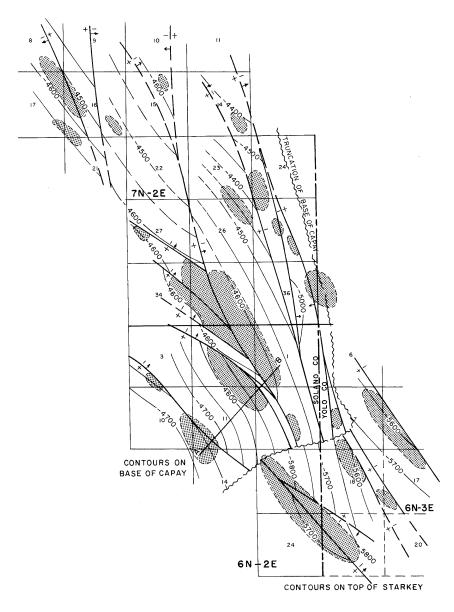
			Marian Marian Marian (Marian Marian)	anama nevenewomen	e negativa e e e e e e e e e e e e e e e e e e e		manana varque.			·			
			6						6	\			ann ann an an an an an an an an an an an
				€		SOL	.ANO	со	YOL	_o cc			
								1					
77N	RIE				T7N	R2E					T7N	R3E	
		WE	ST EA		<b>(</b> )				MA AR	IN E A			
		36	31					36	31	·			-
		l	6	<b>(</b>				ı	6				
						6							
T6N	RIE				T6N	R2E					T _{6NR3}	SE .	
-													
		36	31				,	36	31				

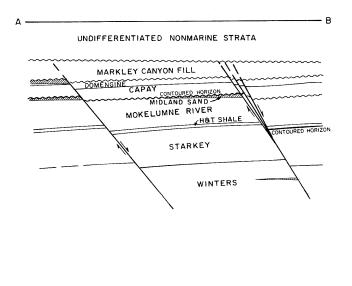
**MILLAR GAS FIELD** COUNTY: SOLANO and YOLO

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R	. B.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess Corp. "Millar" Comm." 1	Amerada Petroleum Corp. "Starkey Fee" 1	2 6N 2F	MD	9,434	Midland	
Deépest well	Hunnicutt & Camp Drilling Co. "Anderson- Rohwer Unit" 1	Same as present	5 6N 21	MD	9,447		Winters Late Cretaceous


#### POOL DATA


·	POOL DATA									
ITEM	MIDLAND					FIELD OR AREA DATA				
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/ac-ft.) Initial gas content (MSCF/ac-ft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive	Mokelumne River Late Cretaceous 4,585									
area (acres)		n.	CERVOIR ROCK PROPERT	are.		4,775				
		RE	SERVOIR ROCK PROPERT	TES						
Porosity (%)										
	RESERVOIR FLUID PROPERTIES									
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F  Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)  Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77*F)	.572†† 965									
		ENH	IANCED RECOVERY PROJ	ECTS						
Enhanced recovery projects Date started Date discontinued										
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						9,753,254 1979				


Base of fresh water (ft.):

Remarks: Millar Gas field was originally known as Dixon Gas area. Cumulative condensate production through 1979, for both areas, was 310 barrels.

## MILLAR GAS FIELD (Main Area)







MILLAR GAS FIELD MAIN AREA

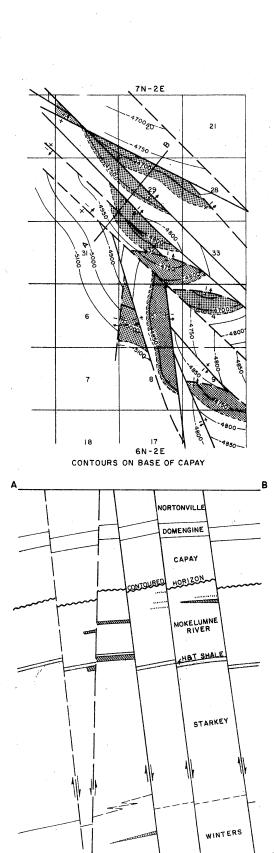
COUNTY: SOLANO and YOLO

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess Corp. "Millar Comm." 1	Amerada Petroleum Corp. "Starkey Fee" 1	2 6N 2E	MD	9,434	Midland	Winters Late Cretaceous
Deepest well	Same as above	<b>"</b>	"	"	"	11	"

n	$\sim$	N.	_	•	TA
r	OO	1.	17.	А	TA

ſ	MANUAL			l		FIELD OR
ITEM	NORTONVILLE	DOMENGINE	MIDLAND	WINTERS	LOWER WINTERS	AREA DATA
Discovery date	September 1965	July 1960	August 1944	September 1969	April 1971	
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	2,350 <u>a/</u> 1,560 1/4	240 1,075 1/4	22,570 1,715 3/8	4,000 3,060 17/64	510 1,160 5/16	
Initial reservoir pressure (psi)	1,520 109	1,780 108	2,075 114	3,400-3,705 107-111	3,795 151	
Initial oil content (STB/acft.). Initial gas content (MSCF/acft.). Formation	Nortonville Eocene 3,875 5	760-970 Domengine Eocene 4,000 20	990-1,300 Mokelumme River Late Cretaceous 4,585 50	870-1,400 Winters Late Cretaceous 7,070-7,970 35	800-1,400 Winters Late Cretaceous 8,245 14	3,525
		Ri	SERVOIR ROCK PROPER	TIES		
Porosity (%)		22-26***	25-29	18-25†	18-25†	
Swi (%) Sgj (%) Permeability to air (md)		40-45*** 60-65***	35-40 60-65 3-64	45-55† 45-55†	45-55† 45-55†	
		, : RI	SERVOIR FLUID PROPER	TIES		
Oil: Oil gravity (*API)	·	:				
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	-	.560†† 990	.572 †† 965	.620†† 850	.630†# 825	
Water: Salinity, NaCl (ppm)	•	3,600	6,850	10,440		
		EN	ANCED RECOVERY PRO	JECTS		
Enhanced recovery projects		į.		·		
		,			·	
Peak oil production (bbl) YearPeak gas production, net (Mcf) Year						6,091,653 1979


Base of fresh water (ft.): 2,900-3,200

Remarks: Cumulative condensate production through 1979 was 188 barrels.

 $\underline{\underline{\mathbf{a}}}/$  Commingled production from Domengine and Nortonville zones.

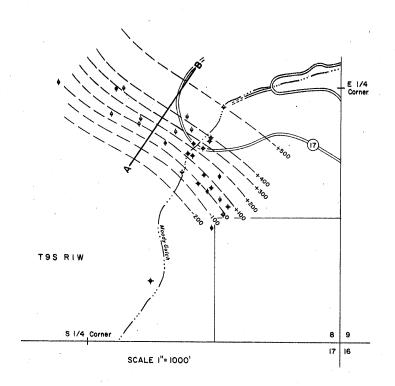
### MILLAR GAS FIELD (West Area)

SERIES	FORMATION	TYPICAL ELECTRIC LOG
MIOCENE TO HOLOCENE SI	UNDIFF NONMARINE STRATA	
OLIGOCENE- \	MARKLEY CANYON FILL	
~~~	DOMENGINE	4000
EOCENE	CAPAY	
	MOKELUMNE RIVER	\$0000
	H&T SHALE	711
UPPER CRETACEOUS	STARKEY	77000
n	WINTERS	9000

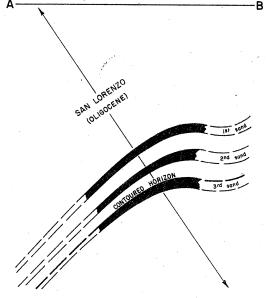
COUNTY: SOLANO

MILLAR GAS FIELD WEST AREA

DISCOVERY WELL AND DEEPEST WELL


The second		Present operator and well designation	Original operator and well designation	Sec.	T. &	k R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
	Discovery well	Amerada Hess Corp., Opr. "Campbell Ranch" 1	The Termo Co. "Amerada-Campbell" 1	4	6N	2E	MD	6,200	Campbell Ranch	
	Deepest well	Hunnicutt & Campbell Drilling Co. "Anderson-Rohwer Unit" 1	Same as present	5	6N	2E	MD	9,447		Winters Late Cretaceous

POOI	. DATA
------	--------


POOL DATA								
ITEM	CAMPBELL RANCH	BUNKER	STARKEY	WINTERS		FIELD OR AREA DATA		
Discovery dateInitial production rates	October 1967	November 1972	October 1972	January 1973				
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	2,900 1,930 14/64	7,970 1,600 7/16	9,160 1,830 7/16	10,000 1,500				
Initial reservoir pressure (psi)	2,340 115	2,400 115	2,555 119	2,960 142				
Initial oil content (STB/ac_ft.) Initial gas content (MSCF/ac_ft.). Formation	860-1,400 Mokelumme River Late Cretaceous 5,290 40	970-1,400 Mokelumne River Late Cretaceous 5,350 65	1,100-1,600 Starkey Late Cretaceous 5,665 75	870-1,500 Winters Late Cretaceous 7,840 15		1,570		
area (acres)		pr	SERVOIR ROCK PROPER	PTIFS		1,0.0		
Porosity (%) Soj (%)	21-28 **.*	23-28	25-30 †	18-25 †	·			
Swi (%) Sgi (%) Permeability to air (md)	35-45*** 55-65***	35-45 55-65	35-45 [†] 55-65 †	45-55 † 45-55 †	·			
	RESERVOIR FLUID PROPERTIES							
Oil: Oil gravity ("API)								
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.570†† 980	.575†† 960	.570†† 980	.631 967				
Water: Salinity, NaCl (ppm)		: -	-	-				
		ENI	HANCED RECOVERY PRO	DJECTS				
Enhanced recovery projects Date started Date discontinued		:						
•								
						-		
Peak oil production (bbl)								
Year Peak gas production, net (Mcf) Year						4,741,398 1972		
								

Base of fresh water (ft.): 2,900

Remarks: Commercial gas deliveries began in August 1968. Cumulative condensate production through 1979 was 128 barrels.

CONTOURS ON TOP OF 3rd SAND

DECEMBER, 1979

COUNTY: SANTA CLARA

MOODY GULCH OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

CHARLES CONTRACTOR		Present operator and well designation	Original operator and well designation	Sec. T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
NAME OF TAXABLE PARTY O	Discovery well	Division of Highways Well No. 3	Santa Clara Petroleum Co. "Moody" 1	8 9S	1W	MD	800	San Lorenzo	
	Deepest well	Division of Highways Well No. 2	Continental Oil & Mineral Co. No. 1	8 9S	1W	MD	2,230		San Lorenzo Oligocene

						Oligocene
	······································		POOL DATA			rici D OP
ITEM	SAN LORENZO	:				FIELD OR AREA DATA
Discovery date	1878 20-40					
Reservoir temperature (*F)	San Lorenzo 011gocene 330-930 20-35 40					
		RE	SERVOIR ROCK PROPERT	TIES		<u> </u>
Porosity (%)		;				
		RE	SERVOIR FLUID PROPERT	ries		
Oil: Oil gravity ('API)	45					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)						
Water: Salinity, NaCl (ppm)						
		ENH	IANCED RECOVERY PROJ	ECTS		Γ
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl) Year	Prior to 1886			·		
	l		L	L	L	<u> </u>

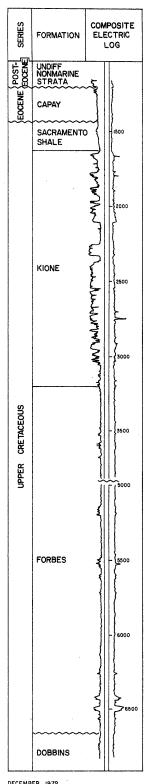
Base of fresh water (ft.): 35

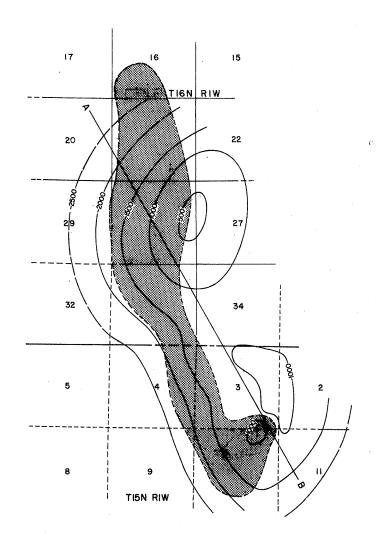
Remarks: Water production is minor and probably fresh. The last oil production was in 1960.

Selected References:

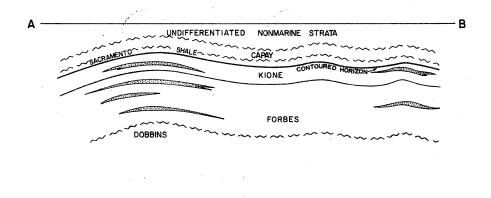
Calif. State Mining Bureau, 1884, Fourth Annual Report of the State Minerologist, p. 302.

Calif. State Mining Bureau, 1887, Seventh Annual Report of the State Minerologist, p. 93-96.


Calif. State Mining Bureau, 1914, Bull. 69, p. 469-470.


Davis, F. F., 1954, Mines and Mineral Resources of Santa Clara County, Calif. Div. of Mines, Calif. Journal of Mines and Geology, Vol. 50, No. 2, p. 385-388.

Krueger, M. L., 1943, Moody Gulch Oil Field: Calif. Div. of Mines Bull. 118, p. 77, 79, and 477.


Vander, Leck L., 1921, Petroleum Resources of California: Calif. State Mining Bureau Bull. 89, p. 64-65.

MOON BEND GAS FIELD

CONTOURS ON TOP OF KIONE

DECEMBER 1978

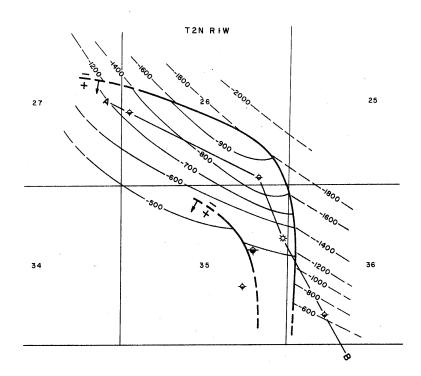
COUNTY: COLUSA

MOON BEND GAS FIELD

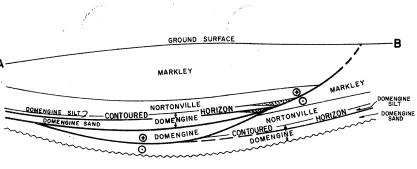
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	3	-	3 15N 1W	MD	2,093	Kione	
Deepest well	Great Basins Petroleum Co. "Great Basins- Davis" 1-9	Colorado Oil & Gas Corp. "Great Basins- Davis" 1-9	9 15N 1W	MD	7,979		Forbes Late Cretaceous

PO	OL.	DA	TA


			POOL DATA		
ITEM	KIONE	FORBES			FIELD OR AREA DATA
Discovery date	October 1954	October 1966			
Initial production rates					
Oil (bbl/day) Gas (Mcf/day)	1,700	514			
Flow pressure (psi) Bean size (in.)	390 24/64	1,710 1/8			
Initial reservoir		2,600-4,350			
pressure (psi) Reservoir temperature (°F)	95	105-145		**	
Initial oil content (STB/acft.)	310-440	1,300-1,700			İ
Initial gas content (MSCF/acft.). Formation	Kione	Forbes			
Geologic age	Late Cretaceous 1,400	Late Cretaceous 2,270-6,850			
Average depth (ft.)	27	2-70			
Maximum productive					1,570
area (acres)					2,070
		Ri	SERVOIR ROCK PROPERT	TIES	
Porosity (%)	25-33***	24-30			
Soi (%)		35-40			
Swi (%)	65-70***	60-65			
Permeability to air (md)					
		R	ESERVOIR FLUID PROPERT	ries	
Oil:					
Oil gravity (°API)					
Sulfur content (% by wt.) Initial solution					
GOR (SCF/STB)					
Initial oii FVF (RB/STB) Bubble point press. (psia)					
Viscosity (cp) @ *F					
Gas:		'			
Specific gravity (air = 1.0)	.570 990	.603 910			
Heating value (Btu/cu. ft.)	990	910			
Water:		14,000-19,000			
Salinity, NaCl (ppm) T.D.S. (ppm)		14,000-19,000			
R _W (ohm/m) (77°F)			,		
		EN	HANCED RECOVERY PRO	JECTS	
F. L					•
Enhanced recovery projects Date started	. l				
Date discontinued	•			*	
•					
				-	
Peak oil production (bbl) Year					
Peak gas production, net (Mcf)					6,445,191 1975
Year	•				

Base of fresh water (ft.): 200~1,300


Remarks: Commercial gas deliveries began in March 1968.

MULLIGAN HILL GAS FIELD (Abandoned)

UPPER CRETACEOUS	~		EOCENE		SERIES
UNDIFF MARINE STRATA	DOMENGINE		NORTONVILLE	MARKLEY	FORMATION
	DOMENGINE SAND	DOMENGINE			MEMBER
monthe Market March March	more marked barded because and house for my more and marked by the same of the	Marra		MAN MAN MAN MAN MAN MAN MAN MAN MAN MAN	1
Lower hope har part and a market and a market and a second	5	Mende	-}1500	more from home for the formation of the	'PICAL ECTRIC LOG

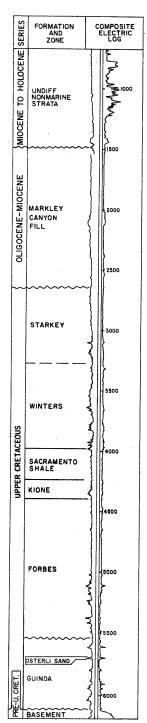
CONTOURS ON TOP OF DOMENGINE SAND

UNDIFFERENTIATED MARINE STRATA

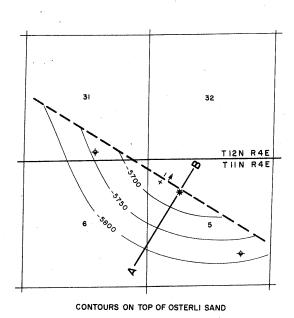
COUNTY: CONTRA COSTA

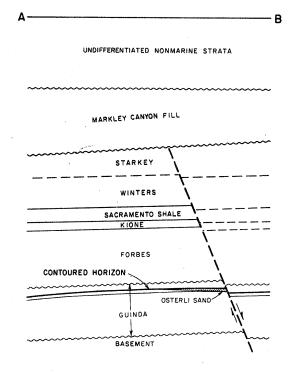
MULLIGAN HILL GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec.	т. ғ	ĿR.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Occidental Petroleum Corp. "Keller Estate" l	Same as present	35	2N	1W	MD	4,965	Domengine	G-zone Late Cretaceous
Deepest well	Same as above	"		"		"	"	"	"

Deepest well	Same as abo	ve				" " "	"
				POOL DATA			
ITEM		DOMENGINE <u>a</u> /					FIELD OR AREA DATA
Discovery date Initial production rate Oil (bbl/day)	s	November 1961					
Gas (Mcf/day) Flow pressure (ps	i)	1,040 300 1/2					
Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature		490 87	8.0				
Initial oil content (STE Initial gas content (MS Formation	S/acft.) SCF/acft.).	240-330 Domengine	:				
Geologic age Average depth (ft.) Average net thickness Maximum productive	(ft.)	Eocene 1,640-1,735 5-30					
area (acres)		40	<u> </u>				
		***************************************	R	ESERVOIR ROCK PROPERT	ries	γ	
Porosity (%) Soj (%) Swj (%)		25 - 30 *** 25 - 35 *** 65 - 75 ***				:	
Sgi (%) Permeability to air (m	d)	05-75***				* :	
			R	ESERVOIR FLUID PROPER	TIES		
Oil: Oil gravity (*API) Sulfur content (% b Initial solution GOR (SCF/STB) Initial oil FVF (RB/ Bubble point press, Viscosity (cp) @ *F	STB)						
Gas: Specific gravity (air Heating value (Btu)	= 1.0) /cu. ft.)	.572†† 985	·			5.	
Water: Salinity, NaCl (ppr T.D.S. (ppm) R _W (ohm/m) (77°F		·					
			ENI	ANCED RECOVERY PRO	JECTS	<u> </u>	
Enhanced recovery pr Date started Date discontinued							
		·					
			£				
Peak oil production (I Year Peak gas production,	net (Mcf)	45,183	:				
Year	,	1967					


Base of fresh water (ft.): Above 500


Remarks: Commercial gas deliveries began in January 1963. The field was abandoned in October 1968. One well was completed and cumulative gas production was 125,576 Mcf.

a/ Commingled production from Domengine silt and Domengine sand.

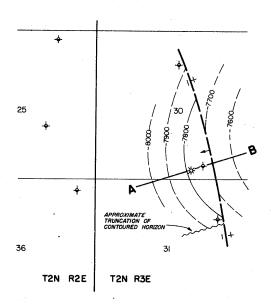
DECEMBER 1979

COUNTY: SUTTER

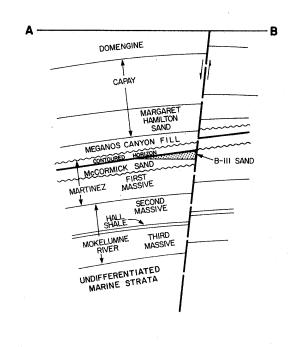
NICOLAUS GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
	Discovery well	Delcalta International Corp. "Osterli" 1	Sacramento Oil and Gas Co. "Osterli" l	5 11N 4E	MD	5,762	Osterli	
	Deepest well	Delcalta International Corp. "Osterli" 3	Bolsa Chica Oil Corp. "Osterli" l	31 12N 4E	MD	6,786		basement pre-Lt, Cret.


			POOL DATA	•	
ITEM	OSTERLI				FIELD OR AREA DATA
Discovery dateInitial production rates	July 1961				
Oil (bbl/day) Gas (Mcf/day)	5,200 355				
Flow pressure (psi)					
pressure (psi) Reservoir temperature (°F)	2,525 115				
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation	570-710 Guinda				
Average depth (ft.)	Late Cretaceous 5,700				
Average net thickness (ft.)	15 160				
area (acres)		PF	SERVOIR ROCK PROPERT	150	
Paracita (0/)	16-18**		SERVOIR ROCK I ROJERI		
Porosity (%)	45-50**				
Sgi (%) Permeability to air (md)	50-55**				
	·	RE	SERVOIR FLUID PROPERT	ries	
Oil: Oil gravity (*API)					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.875†† 220				:
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	1		·		
		ENH	IANCED RECOVERY PROJ	JECTS	
Enhanced recovery projects Date started Date discontinued	.]				
Peak oil production (bbl) Year					
Peak gas production, net (Mcf) Year					

Base of fresh water (ft.): 2,500


Remarks: Gas is 78 percent nitrogen and 22 percent methane. Field has never produced commercially, and the only completed well is shut in.

OAKLEY GAS FIELD

POST- EOCENE SERIES	FORMATION	MEMBER AND ZONE	TYPICAL ELECTRIC LOG
POST-	LUNDIFF		3000
	MARKLEY NONW		4000
	NORTONVILLE		
EOCENE	DOMENGINE		5 5000
	САРАУ		6000
	MEGANOS	MARGARE HAMILTON SAND MEGANOS CANYON FILL	
PALEOGENE	MARTINEZ	IB-III SAN McCORMICK SAND FIRST MASSIVE	
	RIVER	SECOND MASSIVE HALL SHAL	9000
ACEOUS	MOKELUMNE RIVER	THIRD MASSIVE	mar/shamed shake
UPPER CRETACEOUS	UNDIFF MARINE STRATA		اللهام المراجعة المستعمل المست

CONTOURS ON TOP OF MCCORMICK SAND

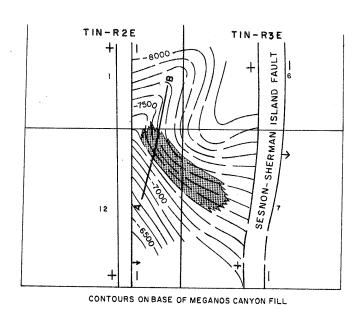
COUNTY: CONTRA COSTA

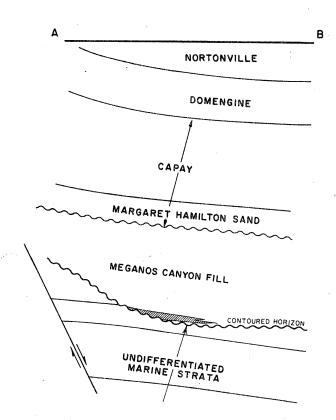
OAKLEY GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Occidental Petroleum Corp. "Machado" 1	Same as present	30	2N	3E	MD	11,607	B-III	undiff. marine Late Cretaceous
Deepest well	Same as above	**		11		"	"	"	"

			POOL DATA			
ITEM	B-III					FIELD OR AREA DATA
Discovery dateInitial production rates Oil (bbi/day)	September 1962		1			
Gas (Mcf/day)	3,162 1,226 5/8 3,080					
pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	166			·		
Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.)	1,100-1,300 Martinez Paleocene 7,822					
Average depth (tt.)	60 120					
		RE	SERVOIR ROCK PROPERT	ries	<u> </u>	
Porosity (%) Soj (%)	24-26					
Swi (%) Sgi (%) Permeability to air (md)	40-45 55-60	. '			·	
		RE	SERVOIR FLUID PROPERT	TIES		
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.591 ^{††} 1,060					
Water: Salinity, NaCl (ppm) T.D.S. (ppm)	7,000					
R _W (ohm/m) (77°F)		ENIL	IANCED RECOVERY PRO	IECTS	·	
Enhànced recovery projects Date started Date discontinued	-		ANCED RECOVERY (NO)			
		·			·	-
		:				
			·			
Peak oil production (bbl) Year	15,108					
Peak gas production, net (Mcf) Year	1967					


Base of fresh water (ft.): Above 800


Remarks: Commercial gas deliveries began in January 1967. The field was abandoned in April 1968. Only one well was completed and cumulative gas production was 15,108 Mcf. The field was reactivated in May 1981.

SOUTH OAKLEY GAS FIELD

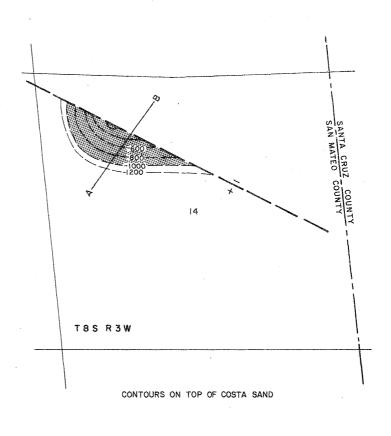
			
	SERIES	FORMATION AND MEMBER	TYPICAL ELECTRIC LOG
		DOMENGINE	4000
ı L	EOCENE	CAPAY	\$5000
	~~	MARGARET HAMILTON SAND	
	PALEOCENE	MEGANOS CANYON FILL	7000
	UPPER CRETACEOUS	UNDIFF MARINE STRATA	M. July 1000

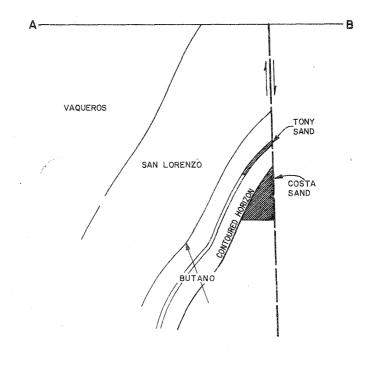
COUNTY: CONTRA COSTA

OAKLEY, SOUTH, GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation	Original operator and well designation	Sec. T.	& R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
П	Discovery well	Conoco Inc. "Marsh Creek Unit" 1	Continental Oil Co. "Marsh Creek Unit" 1	12 1N	2E	MD	8,692	Meganos Canvon fill	undiff. marine Late Cretaceous
	Deepest well	Same as above	n n	"		"	11	Canyon 1111	" .


POOL DATA


			POOL DATA			
ITEM	MEGANOS CANYON FILL					FIELD OR AREA DATA
Discovery date	November 1972		•			
Initial production rates Oil (bbl/day)						
Gas (MCT/day)	500-1,000					
Flow pressure (psi)	2,930					
Bean size (in.)Initial reservoir		 -				
pressure (psi)	2,819	 -		÷		
Reservoir temperature (°F) Initial oil content (STB/acft.)	167					
Initial gas content (MSCF/acft.).	920					
Formation	Meganos Canyon fill Paleocene	i				
Geologic age Average depth (ft.)	7,475	'				
Average net thickness (ft.)	50					
Maximum productive	300					
area (acres)	500					
		RE	SERVOIR ROCK PROPERT	ries		
Porosity (%)	18					
Soj (%)	35					
Swi (%)	35 65					
Permeability to air (md)						
, , , , , , , , , , , , , , , , , , , ,		L	CERTAIN STATES OF COLUMN	l		
		KE	SERVOIR FLUID PROPERT	i i i i	T	
Oil:				1		
Oil gravity (°API) Sulfur content (% by wt.)						
Initial solution	i					
GOR (SCF/STB)						
Initial oil FVF (RB/STB)						
Bubble point press. (psia) Viscosity (cp) @ *F						
					İ	
Gas:	.603					
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	1,062					
Water: Salinity, NaCl (ppm)		'			· '	
T.D.S. (ppm)						
R _W (ohm/m) (77°F)]		
		ENI	IANCED RECOVERY PRO	IECTS		
P-11						-
Enhanced recovery projects Date started		l	1			
== 3.41 .c					1	
Date discontinued						
Date discontinued						
Date discontinued						
Date discontinued						
Date discontinued						
Date discontinued						
Date discontinued						
Date discontinued		·				
Date discontinued		·				
Peak oil production (bbl)						
	1,692,871 1976					

Base of fresh water (ft.): Above 100

Remarks: Commercial gas deliveries began in January 1974. Condensate production in 1979 was 2,762 bb1; cumulative condensate production 12,837 bb1.

SERIES	FORMATION & ZONE	COMPOSITE ELECTRIC LOG
LOWER MIDCENE SERIES	VAQUEROS	
OLIGOCENE	SAN LORENZO	- (1000
EOCENE	TONY SAND BUTANO COSTA SAND	Many May May May May May May May May May Ma

DECEMBER 1979

OIL CREEK OIL FIELD

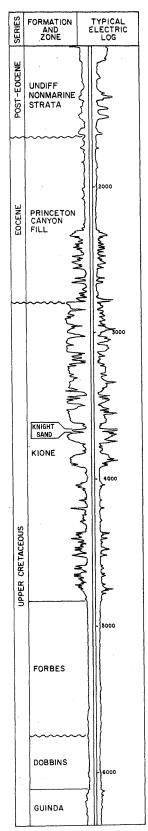
COUNTY: SAN MATEO

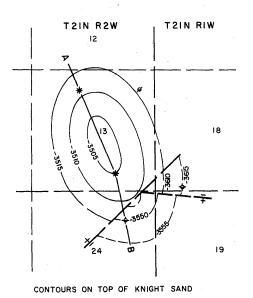
DISCOVERY WELL AND DEEPEST WELL

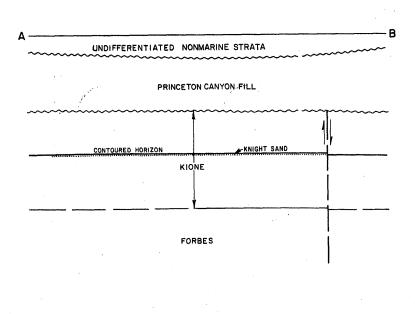
	Present operator and well designation	Original operator and well designation	Sec.	T. 4	& R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Costa Loma Ltd. "Costa" 1	Union Oil Company of California "Richfield- Costa" l	14	8S	3W	l	į.	Costa	
Deepest well	Union Oil Company of California "Rich- field-Costa" 4	Same as present	14	8S	3W	MD	5,112		Butano Eocene

D	വ	 \mathbf{r}	A .	ГΑ

			POOL DATA			
ITEM	TONY	COSTA				FIELD OR AREA DATA
Discovery date	March 1956 24 <u>a</u> / 474 135	October 1955 107 42 25 14/64 769				
pressure (psi) Reservoir temperature (*F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acrez)	99 Butano Eocene 1,860 55	101 580-1,000 Butano Eocene 2,090				. 80
		RI	ESERVOIR ROCK PROPERT	ries		-
Porosity (%)	15-23 60-70 30-40	15-23 60-70 30-40 30-140				
		RI	ESERVOIR FLUID PROPER	ries		
Oil: Oil gravity (*API)Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB)	41 <u>a</u> /	41 392 1.2				
Bubble point press. (psia) Viscosity (cp) @ *F Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)					:	
Water: Salinity, NaCl (ppm)	25,300	25,300				
		ENI	HANCED RECOVERY PRO	JECTS T	·	Г
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						15,058 1976


Base of fresh water (ft.): None


Remarks: Commercial oil production began in October 1955.


a/ Commingled with production from Costa zone.

Selected References: Fothergill, H. L., 1962, La Honda Oil Field, Calif. in Geologic Guide to the Gas and Oil Fields of Northern Calif.: Div. of Mines and Geology Bull. 181, p. 223-224.

ORD BEND GAS FIELD

DECEMBER 1975

COUNTY: GLENN

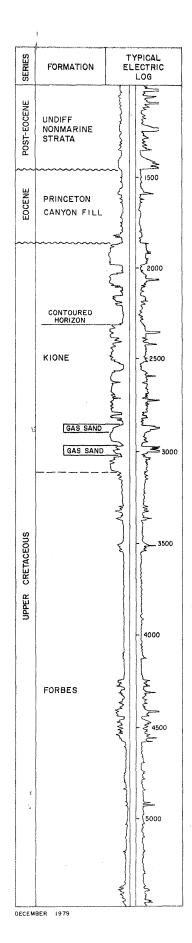
ITEM

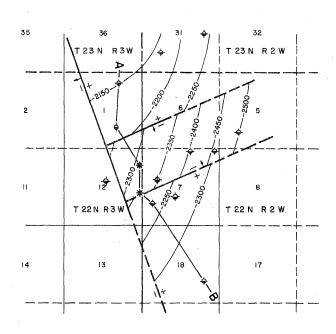
ORD BEND GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

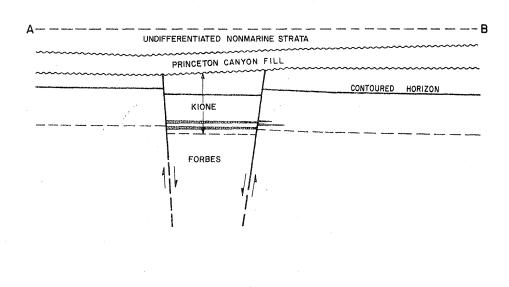
	Present operator and well designation	Original operator and well designation	Sec. T. &	R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	The Superior Oil Co. "Knight" 1	Same as present	13 21N	2 W	MD	6,346	Knight	Guinda Late Cretaceous
Deepest well	Same as above	"	"		"	"	"	"

KNIGHT			FIELD OR AREA DATA


POOL DATA


# # F.141	1012 0111					AREA DATIA
8'	August 1943		·			
Discovery dateInitial production rates	August 1545					
Oil (bbl/day)	5,040					
Gas (Mcf/day)Flow pressure (psi)	1,075	4			'	
Bean size (in.)	24/64					
Initial reservoir	1 415					
pressure (psi) Reservoir temperature (°F)	1,615 112			'		
Initial oil content (STB/acft.)						
Initial gas content (MSCF/acft.).	880-1,200					
Formation	Kione Late Cretaceous					
Geologic ageAverage depth (ft.)	3,660	'				
Average net thickness (ft.)	13		·			
Maximum productive	300					
area (acres)	300					
		R	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	26-32***					
Soj (%) Swj (%)	30-35**					
Sg; (%)	65-70***					
Permeability to air (md)						
			I PROPERTY OF THE PROPERTY OF	T.P.C		
		, KI	SERVOIR FLUID PROPER	1169		
Oil: Oil gravity (*API)						
Sulfur content (% by wt.)						
Initial solution	•					
GOR (SCF/STB)Initial oil FVF (RB/STB)						
Bubble point press. (psia)						
Viscosity (cp) @ °F	•					
Gas:						
Specific gravity (air = 1.0)	.600				*	
Heating value (Btu/cu. ft.)	910					
Water:						
Salinity, NaCl (ppm)	15,400					
T.D.S. (ppm)						
R _W (ohm/m) (77°F)						
		ENI	ANCED RECOVERY PRO	JECTS		
		T	T	T		
Enhanced recovery projects			1			
Date started						
Date discontinued	1					•
		1 .				
Peak oil production (bbl)						
Year	1,034,566					
Peak gas production, net (Mcf) Year	1047					
	1	į.	1	1	I	1

Base of fresh water (ft.): 1,200


Remarks: Commercial gas deliveries began in January 1945.

ORLAND GAS FIELD

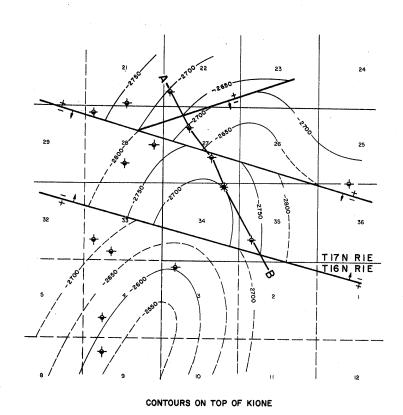
CONTOURS ON KIONE MARKER

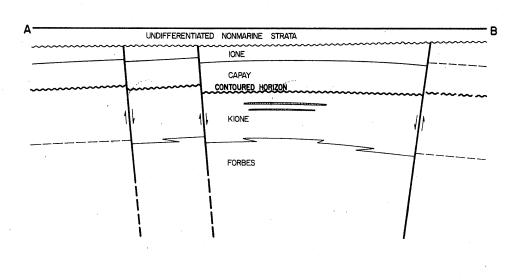
COUNTY: GLENN

ORLAND GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	·	Present operator and well designation	Original operator and well designation	Sec. T. & I	R.	в.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
ı	Discovery well		Oxy Petroleum, Inc. "Morrissey" 1-12	12 22N 3	SW	MD	5,711	unnamed	
l	Deepest well	1-12 Ferguson & Bosworth and Assoc. "Transamerica Dev. Co." 1	Same as present	7 22N 2	W	MD	5,850		Forbes Late Cretaceous


			POOL DATA			
ITEM	UNNAMED					FIELD OR AREA DATA
Discovery date	May 1975 1,160-1,300 1,150-1,260 16/64	: "				
Initial reservoir pressure (psi)	1,350-1,400 101-107 740-760 Kione Late Cretaceous				. ,	
Geologic age	2,710-3,220 10-20					
		Ri	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	25-27*** 33* 67*					
		RI	SERVOIR FLUID PROPER	TIES		
Oil: Oil gravity (*API)	-					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.568591 925-981	·		3		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	84,000					
		EN	HANCED RECOVERY PRO	JECTS		
Enhanced recovery projects Date started Date discontinued						
		:				
		,			:	
Peak oil production (bbl) Year Peak gas production, net (Mcf)	95,454					
Year	1979	<u> </u>		<u> </u>	<u> </u>	


Base of fresh water (ft.): 1,700

Remarks: Commercial gas deliveries began in January 1979.

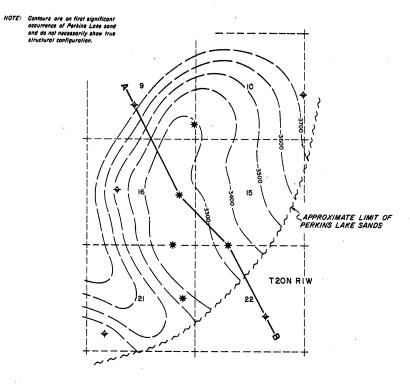
PEACE VALLEY GAS FIELD

DECEMBER 1979

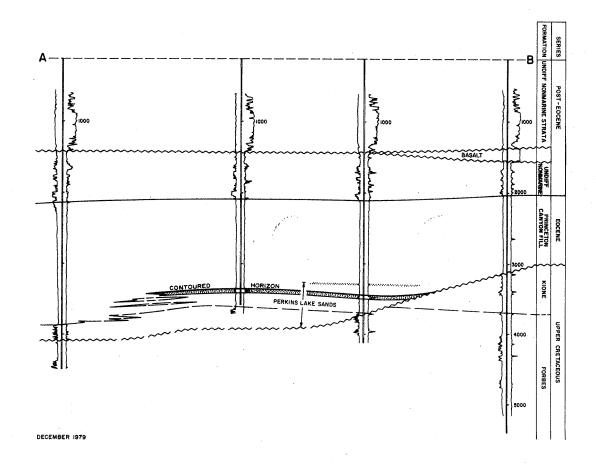
COUNTY: SUTTER

PEACE VALLEY GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


·	Present operator and well designation	Original operator and well designation	Sec. T. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Buttes Community" 1-34	Same as present	34 17N 1E	MD	6,798	Kione	
Deepest well	Shell Oil Co. "Citco-DeRee" 1-35	Same as present	35 17N 1E	MD	7,236 <u>a</u>	/ 	basement pre-Lt. Cret.

	POOL DATA							
ITEM	KIONE	·				FIELD OR AREA DATA		
Discovery date	July 1977 5,200							
Bean size (in.)	1,395 110 800							
Formation	Kione Late Cretaceous 3,150 30							
area (acres)	40	RF	SERVOIR ROCK PROPERT	TIES				
Porosity (%)	28* 30* 70*							
		RE	SERVOIR FLUID PROPERT	ries				
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ "F								
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.643 799							
Water: Salinity, NaCl (ppm) T.D.S. (ppm)								
		ENF	IANCED RECOVERY PROJ	ECTS				
Enhanced recovery projects Date started Date discontinued						·		
·	*.							
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year								


Base of fresh water (ft.): 750

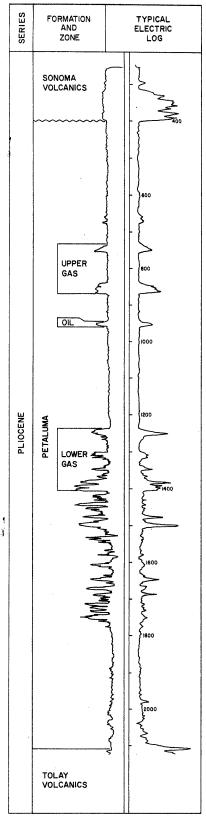
Remarks: Commercial gas deliveries have not yet begun.

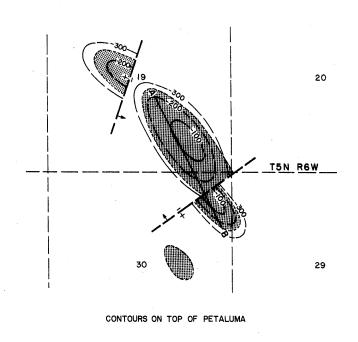
a/ Directional well, true vertical depth is 7,236 feet.

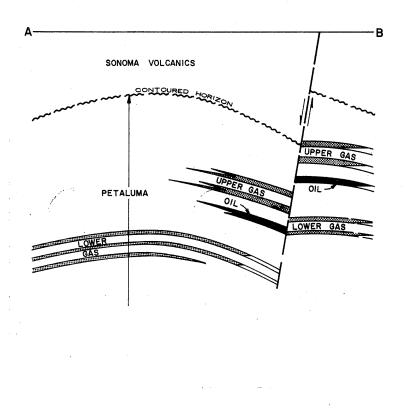
CONTOURS ON TOP OF PERKINS LAKE SANDS

COUNTY: BUTTE

DISCOVERY WELL AND DEEPEST WELL


·	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Exxon Corp. "Parrott Investment Company"	Humble Oil & Refining Co. "Parrott Invest-	16 20N 1W	MD	4,370	Perkins Lake	
Deepest well	B-1 Exxon Corp. "Parrott Investment Company"	ment Company" B-1 Humble Oil & Refining Co. "Parrott Invest- ment Company" B-6	16 20N 1W	MD	6,500		Guinda Late Cretaceous


			POOL DATA			
ITEM	PERKINS LAKE					FIELD OR AREA DATA
Discovery date	September 1955 4,060 975 3/8					
Initial reservoir pressure (psi)	1,575-1,600 106 1,200	*				·
Formation	Princeton Cyn. fill Eocene 3,400 10-130					
		RE	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	0.5					
		RE	SERVOIR FLUID PROPERT	ries		
Oil: Oil gravity ('API)					:	
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.580 950					
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	1					
		ENI	IANCED RECOVERY PROJ	JECTS		
Enhanced recovery projects Date started Date discontinued	.[
		e de la companya de l				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	2,841,396 1960	÷				


Base of fresh water (ft.): 1,500

Remarks: Commercial gas deliveries began in December 1965.

Selected References: Harding, T. P., 1962, Perkins Lake Gas Field, Calif.: Calif. Div. of Mines Bull. 181. p. 103-105.
Lorshbough, A. L., 1971, Perkins Lake Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 57, No. 1.

DECEMBER 1979

PETALUMA OIL FIELD

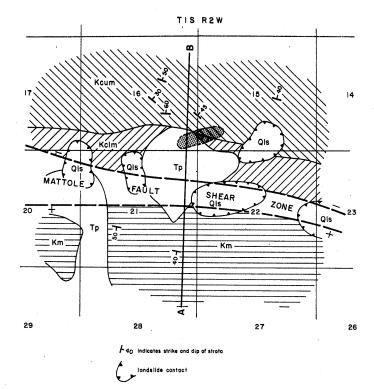
COUNTY: SONOMA

DISCOVERY WELL AND DEEPEST WELL

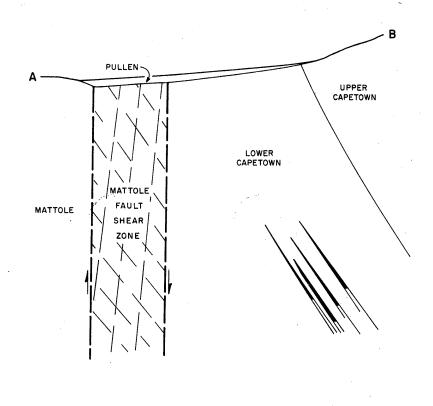
	Present operator and well designation	Original operator and well designation	Sec.	T. 8	k R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Herbert N. Witt No. 2	Same as present	19	5N	6W	MD	1,420	0i1	
Deepest well	Shell Oil Co. "Murphy" 1	Same as present	19	5N	6W	MD	6,385		Franciscan(?) late Mesozoic

			POOL DATA			
ITEM	UPPER GAS	OIL	LOWER GAS			FIELD OR AREA DATA
Discovery date	May 1958	May 1926 12	August 1941 3,030 347			
Bean size (in.)	1/2 315 90	90	5/8 558 100			
Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive	190 Petaluma Pliocene 670 20	Petaluma Pliocene 920 25	340 Petaluma Pliocene 1,240 20			
area (acres)				-		100
		R)	ESERVOIR ROCK PROPE	RTIES	r	
Porosity (%)	30** 30**	:	30** 30** 70**			
Sgi (%) Permeability to air (md)	70**					
		R	RESERVOIR FLUID PROPE	RTIES	r	
Oil: Oil gravity (*API)		20				
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.568 1,018	:	.568 1,018			
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	4,600		4,600			
		EN	HANCED RECOVERY PR	OJECTS		
Enhanced recovery projects Date started Date discontinued		:				
:						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						1,508 1951 136,004 1956

Base of fresh water (ft.): 100


Remarks: Commercial gas deliveries began in August 1942 . Maximum proved acreage is 95 for gas, 10 for oil, and 5 with gas and oil combined.

Selected References: Johnson, F. A., 1943, Petaluma Region in Geologic Formations and Economic Development of the Oil and Gas Fields of Calif.: Calif. Div. of Mines Bull. 118, p. 622-627.


PETROLIA OIL FIELD (Abandoned)

SERIES	F	FORMATION AND MEMBER	THICK- NESS (FEET)
HOLO-	LAN (QI	IDSLIDE	0 10 30
UPPER MIOCENE	PUL (Tp	LEN	0 to 100
NM	WN	UPPER MEMBER (Kcum)	
CRETACEOUS	CAPETOWN	LOWER MEMBER (Kclm)	±7000
	MAT (Km	TTOLE	±5000

SERIES	FORMATION	MEMBER AND ZONE	TYPICAL ELECTRIC LOG
CRETACEOUS	CAPETOWN	LOWER MEMBER	SOO TO SO

MAP AND CROSS SECTION BASED UPON DATA BY A T ANDERSON, CONSULTANT, AND MODIFIED BY THE DIVISION OF OIL AND GAS.

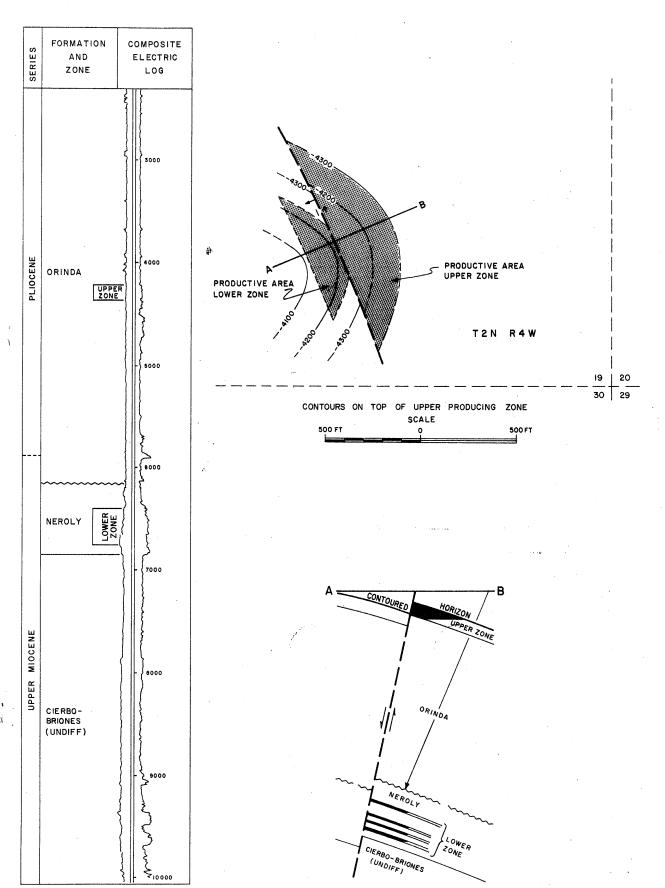
DECEMBER 1979

COUNTY: HUMBOLDT

PETROLIA OIL FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

Control of the last		Present operator and well designation	Original operator and well designation			dep		Total depth (feet)	Pool (zone)	Strata & age at total depth
١	Discovery well	West Coast Oil Corp. "West Coast" 1	Same as present	16 1S	2W	Н	1,785	unnamed		
-	Deepest well	Conoco Inc. "Chambers" 1	Continental Oil Co. "Chambers" 1	21 1S	2W	Н	4,041		Capetown Cretaceous	


			POOL DATA			
ITEM	UNNAMED					FIELD OR AREA DATA
Discovery date	October 1953 100					
Flow pressure (psi)	642 96					
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation	Capetown Cretaceous 1,570 90	·				
Maximum productive area (acres)	10					
1		RE	SERVOIR ROCK PROPERT	TIES		
Porosity (%)						
F		- RF	SERVOIR FLUID PROPER	TIES		
Oil: Oil gravity ("API)	46					
Bubble point press. (psia) Viscosity (cp) @ "F Gas: Specific gravity (air = 1.0)						
Heating value (Btu/cu. ft.)						
KW (01111) (77 F)			L	1	<u> </u>	
		ENI	IANCED RECOVERY PRO	JECTS	 	
Enhanced recovery projects Date started Date discontinued		1				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	210 1953	·				

Base of fresh water (ft.): 40

Remarks: Commercial oil production began in November 1953. The field was abandoned in September 1971. Two wells were completed and cumulative oil production was 350 barrels. This field is about four miles northwest of California's first oil production (circa 1865).

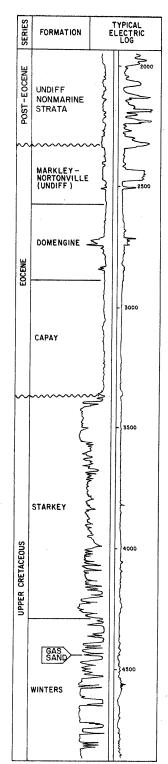
PINOLE POINT OIL FIELD

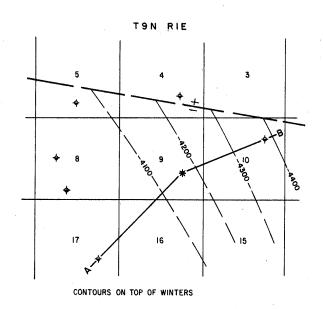
(Abandoned)

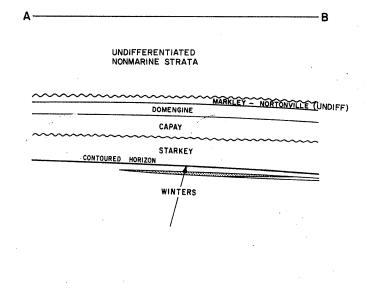
COUNTY: CONTRA COSTA

PINOLE POINT OIL FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


F		Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Ì	Discovery well	Bethlehem Steel Corp. "Bethlehem" 1	Standard Oil Company of Calif. "Bethlehem"	19 2N 4W	MD	9,997	Lower	Cierbo-Briones late Miocene
	Deepest well	Same as above	n	"	"	11	ti .	11


			POOL DATA			
ITEM	UPPER	LOWER				FIELD OR AREA DATA
Discovery date	August 1969 6 1,870 138 Orinda Pliocene 4,350 75	April 1969 208 361 520 12/64 2,795 168 Neroly late Miocene 6,460 70				20
area (acres)				<u> </u>		
		RE	SERVOIR ROCK PROPERT	ries	1	
Porosity (%)						
		RE	SERVOIR FLUID PROPER	TIES		
Oil: Oil gravity (*API)Sulfur content (% by wt.) Initial solution GOR (SCF/STB)	. 11	41				
Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ °F				-		
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)						
Water: Salinity, NaCl (ppm)	· -	14,600				
		ENI	HANCED RECOVERY PRO	JECTS		
Enhanced recovery projects Date started		:				·
		:				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	·					5,575 1969 65,608 1973


Base of fresh water (ft.): 200

Remarks: Commercial oil production began in April 1969. The field was abandoned in July 1975. Two wells were completed and cumulative oil production was 11,282 barrels.

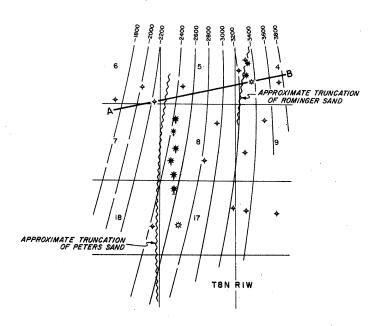
PLAINFIELD GAS FIELD

DECEMBER 1979

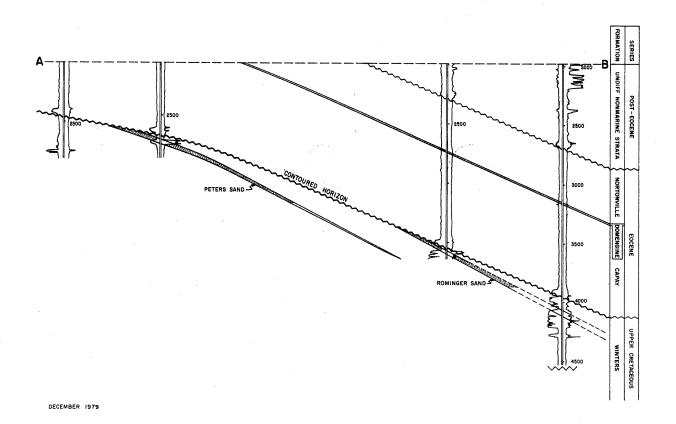
COUNTY: YOLO

PLAINFIELD GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec.	Г. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Supreme Oil & Gas Corp. "Supreme-Bell" 1	Supreme Oil & Gas Corp. "R.M. Bell Community" l	9 9	N 1E	MD	4,553 a	/ unnamed	
Deepest well	Same as above	D. C. Basolo, Jr. "R. M. Bell Community" 1	9 9	ON 1E	MD	5,070		Winters Late Cretaceous

	POOL DATA									
ITEM	UNNAMED	:				FIELD OR AREA DATA				
Discovery date	September 1967									
Gas (Mcf/day) Flow pressure (psi)	782 920									
Bean size (in.)	3/16				·					
pressure (psi)	1,585 113									
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.).	610-770									
Formation	Winters Late Cretaceous									
Geologic age	4,430				,					
Average net thickness (ft.)	40									
<u> </u>		RE	SERVOIR ROCK PROPERT	TES						
Porosity (%)	25~29***									
Soj (%) Swi (%)	45-50***									
Sgi (%) Permeability to air (md)	50~55***									
		RE	SERVOIR FLUID PROPERT	ries						
Oil: Oil gravity (*API)		:								
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.595†† 915									
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)										
KW (OIMI/III) (// F)		ENH	ANCED RECOVERY PROJ	ECTS		-				
Enhanced recovery projects Date started										
Date discontinued		·								
		į.								
	,	:		,		a.				
Peak oil production (bbl)										
YearPeak gas production, net (Mcf)		:								


Base of fresh water (ft.): 2,500

Remarks: Commercial gas deliveries have not yet begun. The well was originally drilled and abandoned in 1960 by D. C. Basolo, Jr. a/ Sidetracked hole, redrilled from 2,548 feet.

PLEASANT CREEK GAS FIELD

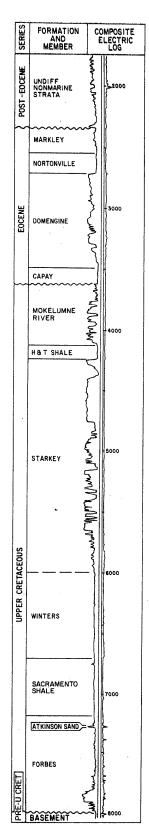
CONTOURS ON TOP OF WINTERS

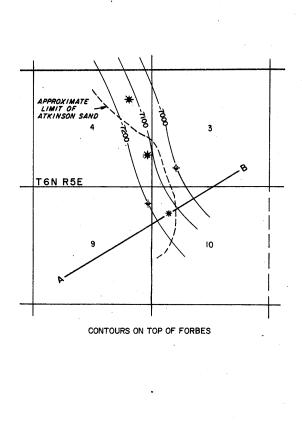
COUNTY: YOLO

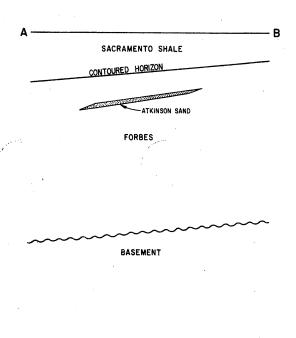
PLEASANT CREEK GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	т. &	R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Pacific Gas and Electric Co. "Pleasant	Shell Oil Co. "Pleasant Creek Unit 3" 1	8	8N	1W	MD	3,000	Peters	
Deepest well	Creek Unit 3" 1 The Divide Ridge Oil Co. No. 1	Same as present	8	8N	1W	MD	5,006		Forbes (?) Late Cretaceous


POOL DATA


*	POOL DATA									
ITEM	ROMINGER	PETERS				FIELD OR AREA DATA				
Discovery date Initial production rates	June 1953	December 1948								
Oil (bbl/day)	5,250 1,390 1/2	9,550 510 1								
Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	1,670 118	1,270 107								
Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net hickness (ft.) Maximum productive	1,000-1,200 Winters Late Cretaceous 3,700 25	800-900 Winters Late Cretaceous 2,800 30				:				
area (acres)		DE	SERVOIR ROCK PROPERT	TIES		260				
			SERVOIR ROCK PROPERT	1125						
Porosity (%)	31-34 30-35 65-70	31-34 30-35 65-70 1,000								
		RE	SERVOIR FLUID PROPERT	ries						
Oil: Oil gravity ('API)										
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.572 990	.572 990								
Water: Salinity, NaCl (ppm) T.D.S. (ppm)										
		ENF	LIANCED RECOVERY PROJ	ECTS		L				
Enhanced recovery projects Date started Date discontinued										
·	:	,								
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year		-				1,021,466 1952				


Base of fresh water (ft.): 1,700-2,700

Remarks: Commercial gas deliveries began in April 1951. Northeast portion of Pleasant Creek Gas field was also known as Chickahominy Gas field. Pacific Gas and Electric Company acquired the wells that are productive from the "Peters" sand in 1958, and converted them to gas storage in April 1960. The working gas storage capacity is 2,140,000 Mcf with an approximate maximum withdrawl rate of 60,000 Mcf/day.

Selected References: Hunter, G. W., 1955, Pleasant Creek Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 41, No. 1.

FEBRUARY 1980

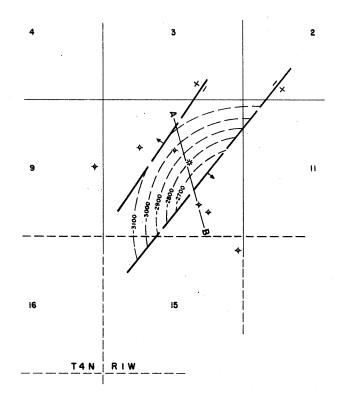
COUNTY: SACRAMENTO

POPPY RIDGE GAS FIELD

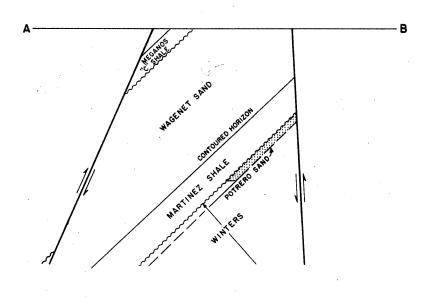
DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation	Original operator and well designation	Sec. 1	r. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
П	Discovery well	Milon L. Johnston "Atkinson" 1	Same as present	10 6	6N	5E	MD	7,460	Atkinson	
	Deepest well	Milon L. Johnson "Jillson" 1	Same as present	9 (6N	5E	MD	8,118		basement pre-Lt. Cret.

	DA	


			POOL DATA			
ITEM	ATKINSON					FIELD OR AREA DATA
Discovery date	March 1962					
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	4,500 2,575 17/64				·	
Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	3,220 138			·		
Initial gas content (MSCF/acft.). Formation	1,200-1,600 Forbes Late Cretaceous 7,270					
Average net thickness (ft.)	9					
		RE	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	23-27 35-40***					
Sgi (%) Permeability to air (md)	60-65***					
		RE	SERVOIR FLUID PROPER	ries	<u> </u>	
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.634 826		,			
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)						
		EN⊪	IANCED RECOVERY PRO	JECTS		
Enhanced recovery projects Date started Date discontinued		·				·
			6			
		,				
Peak oil production (bbl) YearPeak gas production, net (Mcf)						
Year						

Base of fresh water (ft.): 1,700


Remarks: Commercial gas deliveries have not yet begun

POTRERO HILLS GAS FIELD (Abandoned)

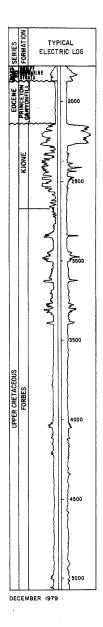
CONTOURS ON BASE OF WAGENET SAND

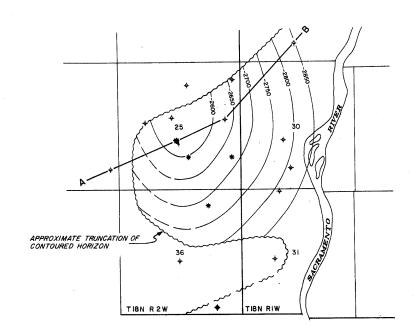
COUNTY: SOLANO

POTRERO HILLS GAS FIELD (ABD)

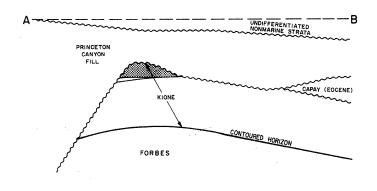
DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation	Original operator and well designation	Sec.	т. 8	k R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
	Discovery well	ARCO Oil and Gas Co. "Potrero Hills" 1	Richfield Oil Corp. "Potrero Hills" 1	10	4N	1W	MD	5,334	Potrero	
	Deepest well	MCOR Oil and Gas Corp. "McCulloch- Macson Scally Unit" 1	McCulloch Oil Exploration Co. of Calif., Inc. "McCulloch-Macson Scully Unit" 1	10	4N	1W	MD	9,020		undiff. marine Late Cretaceous
Γ										


			POOL DATA			
ITEM	POTRERO					FIELD OR AREA DATA
Discovery date	December 1938 1,500 1,050 1/4					
Initial reservoir pressure (psi)	1,420 110					
Formation	Winters Late Cretaceous 3,245 40					
area (acres)	40	RE	SERVOIR ROCK PROPERT	TIES		
Porosity (%)		:	·			
·		RE	 Servoir fluid proper	ries		
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.573 ^{††} 970					
Water: Salinity, NaCl (ppm)	5,800					
		ENH	IANCED RECOVERY PROJ	ECTS	*	
Enhanced recovery projects Date started Date discontinued		7.9				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	20,042 1942					


Base of fresh water (ft.): 1,100

Remarks: Commercial gas deliveries began in October 1942. The well was produced for 3 months and was abandoned in April 1943. Cumulative gas production is 21,542 Mcf.


Selected References: Tolman, F. B., 1943, Potrero Hills Gas Field in Geologic Formations and Economic Development of the Oil and Gas Fields of Calif.: Calif. Div. of Mines Bull. 118, p. 595-598.

PRINCETON GAS FIELD

CONTOURS ON BASE OF KIONE

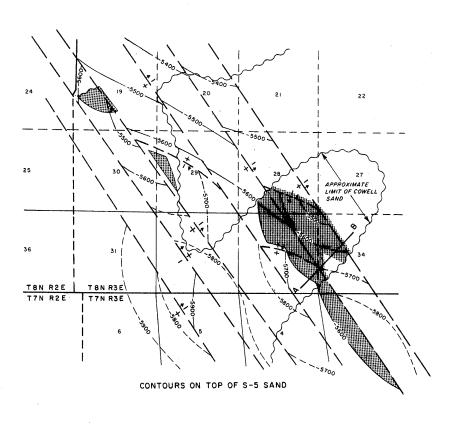
COUNTY: COLUSA

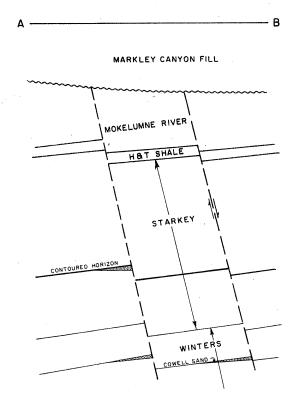
PRINCETON GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Rheem Calif. Land Co. "Southam" 1	Richard S. Rheem, Opr. "Southam" 1	25 18N 2W	MD	5,072	Kione	
Deepest well	Intex Oil Co. "Capitol" 1-30	Same as present	30 18N 1W	MD	7,703		Dobbins Late Cretaceous

Deepest well	Intex Oil C	o. "Capitol" 1-30	Same as pre	sent	30 18N 1V	MD MD	7,703		Late Cretaceous			
			;	POOL DATA								
ITEM		KIONE	:						FIELD OR AREA DATA			
Discovery date Initial production rate Oil (bbl/day)	s	December 1953										
Gas (Mcf/day) Flow pressure (ps Bean size (in.) Initial reservoir	i)	2,850 940 3/8										
pressure (psi) Reservoir temperature Initial oil content (STR	(°F) B/acft.)	1,015 85	* .									
Initial gas content (MS Formation	(ft.)	610-650 Kione Late Cretaceous 2,170 110										
Maximum productive area (acres)		320										
				RESERVOIR ROCK PROPER	TIES							
Porosity (%) Soj (%) Swj (%)		27-29*** 30*										
Sgj (%) Permeability to air (m		70* 125-320										
		RESERVOIR FLUID PROPERTIES										
Oil: Oil gravity (*API) Sulfur content (% binitial solution GOR (\$CF/\$TB) Initial oil FVF (RB/: Bubble point press. Viscosity (cp) @ *F	STB)											
Gas: Specific gravity (air Heating value (Btu/	= 1.0) /cu. ft.)	.572 980	·									
Water: Salinity, NaCl (ppn T.D.S. (ppm) R _W (ohm/m) (77°F	***************************************											
			EN	HANCED RECOVERY PRO	JECTS							
Enhanced recovery pro Date started Date discontinued	***************************************											
Date discontinued	•							•				
Peak oil production (k	bbi)											
Peak gas production, i	net (Mcf)	881,744 1956										


Base of fresh water (ft.): 1,800


Remarks: Commercial gas deliveries began in August 1955.

Selected References: Bruce, Donald D., 1959. Princeton Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 45, No. 1.

PUTAH SINK GAS FIELD

SERIES	FORMATION MEMBER ZONE	COMPOSITE ELECTRIC LOG
MIOCENE TO HOLOCENE	UNDIFF NONMARINE STRATA	Mallower of the land have a second of the land of the
الد ـ	~~~~	~{ }
OLIGOCENE-	MARKLEY CAN	YON } -{3000
~_	NORTONVILLE	~{ }
EOCENE	DOMENGINE	_{{ }}
E	CAPAY	_
~	MOKELUMNE RIVER	- 4000
	H&T SHALE	
ACEOUS	S-1 S-2	5000
~UPPER CRETACEOUS	STARKEY	
ddn∽.	S-5	6000
	DUNN S	AND
	WINTERS	SAND

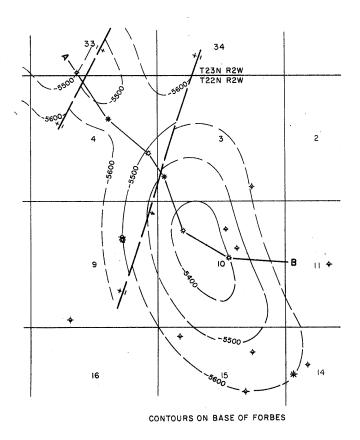
DECEMBER 1979

COUNTY: YOLO

PUTAH SINK GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation	Original operator and well designation	Sec.	. т. ғ	kR.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
I	Discovery well	Shell Oil Co. "Shoshone-Cowell" 1	Same as present	34	8N	3E	MD	6,975	Cowell	
december 2	Deepest well	Occidental Petroleum Corp. "Glide" 1	Same as present	34	8N	3E	MD	8,123		Winters Late Cretaceous


PO	റ	ı.	D	A	T	A

POOL DATA						
ITEM	S-4	DUNN	COWELL			FIELD OR Area data
Discovery date	November 1973	April 1974	June 1973			
Oil (bbl/day)	-					
Gas (Mcf/day)	2,080 2,050	1,600 2,050	970 2,550			·
Flow pressure (psi) Bean size (in.)	2,030	1/2	28/64			
nitial reservoir			2 205	Ì		
pressure (psi) Reservoir temperature (°F)	2,420 110	2,710 118	2,995 122			
nitial oil content (STB/acft.)						
nitial gas content (MSCF/acft.).	1,500-1,900	1,100-1,600	1,200-1,700 Winters		·	
ormation	Starkeý Late Cretaceous	Winters Late Cretaceous	Late Cretaceous			
eologic ageverage depth (ft.)	5,550	6,210	6,500			
verage net thickness (ft.) laximum productive	50	20	60			
laximum productive area (acres)				1	-	720
area (acres)		·				
		RE	SERVOIR ROCK PROPERT	TIES		
orosity (%)	29-33†	25-28†	25-28†			
oj (%)	22-30†	30-45†	30-45†			
wi (%)	70-781	55-70†	55-70†			
ermeability to air (md)						
		RE	SERVOIR FLUID PROPERT	TIES	<u> </u>	L
				T		
Dil: Oil gravity ('API)			·			
as:						
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.607 900	.610 890	.605 910			
Vater: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)		:				
	<u></u>	ENH	ANCED RECOVERY PROJ	IECTS		L
				1		
nhanced recovery projects Date started						
Date discontinued						
·					1	
7						
		×				
		· '				
			1	1		1
		:				
eak oil production (bbl)		:				-
Peak oil production (bbl) Yeareak gas production, net (Mcf)						3,875,386

Base of fresh water (ft.): 2,000-2,500

Remarks: Commercial gas deliveries began in December 1974.

RANCHO CAPAY GAS FIELD

DECEMBER 1979

COUNTY: GLENN

RANCHO CAPAY GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	G.E. Kadane & Sons "Moda A" 54-10	General Petroleum Corp. "Moda A" 54-10	10 22N 2W	MD	5,898	Moda	
Deepest well	The Termo Co. "Rancho Capay Unit 1" 1	Trico Oil & Gas Co. "Rancho Capay Unit" 1	4 22N 2W	MD	6,035		Dobbins Late Cretaceous

POC)L D	ATA
-----	------	-----

POOL DATA						
ITEM	MODA	KIONE	UNNAMED			FIELD OR AREA DATA
Discovery date	August 1959	June 1966	August 1962			
Initial production rates Oil (bbl/day)			1 000			
Gas (Mcf/day) Flow pressure (psi)	5,800 390	730 1,000	4,000 1,400			
Bean size (in.)	56/64	12/64	1/4			
pressure (psi)	660 96	1,120 115	2,405-2,705 156-166			
Reservoir temperature (°F) Initial oil content (STB/acft.)	400-490	520-650	800-1,000			
Initial gas content (MSCF/acft.).	undicf. nonmarine	Kione	Forbes			
Geologic age Average depth (ft.)	Post-Eocene 1,710	Late Cretaceous 2,580	Late Cretaceous 4,540-5,000			
Average net thickness (ft.)	20	10	1-30			
area (acres)						490
		R	ESERVOIR ROCK PROPER	TTIES		
Porosity (%)	30-34***	24-28†	18-24			
Soj (%) Swj (%)	25-30***	30-35†	35-40			
Sgi (%) Permeability to air (md)	70-75***	: 65-70†	60-65			
rermeability to air (mg)			<u> </u>			
		R	ESERVOIR FLUID PROPER	RTIES	[
Oil:						
Oil gravity (°API)Sulfur content (% by wt.)						
Initial solution GOR (SCF/STB)						
Initial oil FVF (RB/STB)						
Bubble point press. (psia) Viscosity (cp) @ °F						
Gas:		·	.562			
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	860	950	1,000			
Water: Salinity, NaCl (ppm)						
T.D.S. (ppm)	·	,				
R _W (ohm/m) (77°F)		<u> </u>				
		EN	HANCED RECOVERY PRO	DJECTS	I	
Enhanced recovery projects						
Date started Date discontinued						
	· .					
		,				
						*
Peak oil production (bbl)						
Year					1	246,336
Peak gas production, net (Mcf) Year					1	1967
	1	L				•

Base of fresh water (ft.): 1,200

Remarks: Commercial gas deliveries began in March 1961.

Selected References: Land, P. E., 1970, Rancho Capay Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 56, No. 1.

RED BANK CREEK GAS FIELD (Abandoned)

SERIES	FORMATION AND ZONE	TYPICAL ELECTRIC LOG
POST-EOCENE	UNDIFF STRATA	My Some
UPPER CRETACEOUS	FORBES	January Manus Loth man ship Converse Manus

32	33
+	T27N R3W T26N R3W
5	4
8 	9
17	16

DEFINITIVE DATA UNAVAILABLE

DECEMBER 1979

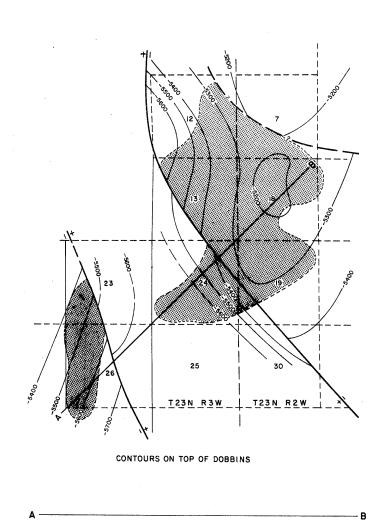
COUNTY: TEHAMA

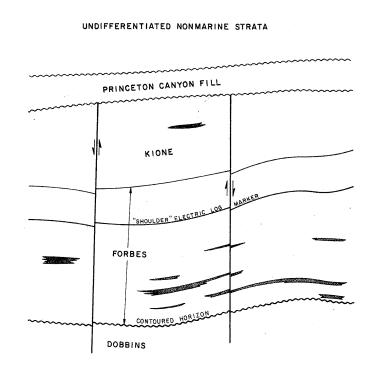
RED BANK CREEK GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

ACCOUNTS OF THE PERSON NAMED IN		Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
	Discovery well	Red Bluff Associates "Goff" 1	Kenyon C. Sills, Oper., Inc. "Goff" 1	4 26N 3W	MD	4,196 <u>a</u> /	unnamed	
	Deepest well	Same as above	Humble Oil & Refining Co. "Henry James Goff, et ux" l	4 26N 3W	MD	5,800		Dobbins Late Cretaceous

Discovery date INNOMED INNOMED AREA DATE Discovery date International Content (ST (Act A)							1 2200 22000000
Discovery date				POOL DATA		,	
Initial production rates Oil (bb)(4/qsy) Cas (Mcf/day) To	ITEM	UNNAMED					FIELD OR AREA DATA
1,400 1,227 3/18 1,227 3/1	Initial production rates	August 1964					
Pressure (psi)	Flow pressure (psi) Bean size (in.)	1,227	:				
Formation	Pressure (psi)	121					
S Average net thickness (ft.) S 40	Geologic age	Forbes Late Cretaceous					
Porosity (%)	Average net thickness (ft.) Maximum productive	8		·			
So; (%)			Ri	SERVOIR ROCK PROPERT	ries	I.	L
Sgi (%)	Soj (%)	'			1		
Oil: Oil gravity (*API)	Sgi (%)						
Oil gravity (*AP)			RI	SERVOIR FLUID PROPERT	TIES		
Specific gravity (air = 1.0)	Oil gravity (*API)						
Salinity, NaCl (ppm)	Specific gravity (air = 1.0)						
Enhanced recovery projects	Salinity, NaCl (ppm) T.D.S. (ppm)						
Enhanced recovery projects			FNI	ANCED RECOVERY PROJ	IFCTS		
Date started]		
	Date started				·		
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year 1965 9,767 1965	YearPeak gas production, net (Mcf)	9,767	:				


Base of fresh water (ft.): 2,650


Remarks: Commercial gas deliveries began in December 1965. The field was abandoned in March 1972. Only one well was completed and cumulative gas production was 19,076 Mcf.

a/ The well was originally drilled and abandoned by Humble Oil and Refining Co. (now Exxon Corp.), then reentered and completed by Kenyon C. Sills.

RICE CREEK GAS FIELD

1	SERIES	FORMATION	COMPOSITE ELECTRIC LOG
	POST-EOCENE	UNDIFF. NON MARINE STRATA	Manual W Vlandy and Mr Manual Land
	EOCENE	PRINCETON CANYON FILL	
A CALLES		KIONE	Something of the second of the
	UPPER CRETACEOUS	FORBES	4000
		DOBBINS	6000
		GUINDA	

COUNTY: TEHAMA

RICE CREEK GAS FIELD

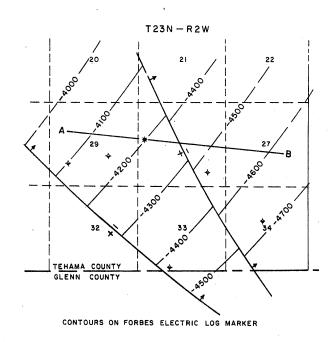
DISCOVERY WELL AND DEEPEST WELL

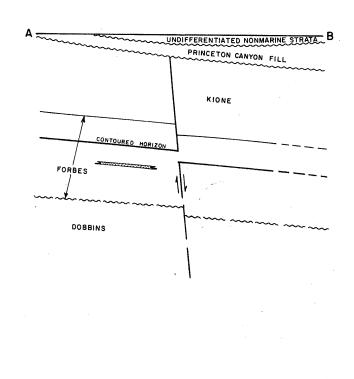
		Present operator and well designation	Original operator and well designation	Sec. T. & R.	в,&м	Total depth (feet)	Pool (zone)	Strata & age at total depth
l	Discovery well	Sun Oil Co. "George S. Reid Unit" l	Sunray DX 0il Co. "George S. Reid Unit" 1	13 23N 3W	MD	5,793	Forbes	
	Deepest well	Sun Oil Co. "Victor Ranch" 4	Sumray DX Oil Co. "Victor Ranch" 4	7 23N 2W	MD	12,175		Venado Late Cretaceous

D	^	^		D.	A	т.	٨
г	u	v	L	v.	n	8 /	٦.

POOL DATA						
ITEM	UNNAMED	UNNAMED				FIELD OR AREA DATA
Discovery date	May 1964 6,115 a/ 835-970 3/8-1/4 970-1,270 87-95 550-610 Kione Late Cretaceous 2,000-2,660 5-40	May 1963 3,230 1,290 5/16 2,260-3,140 114-129 810-1,000 Forbes Late Cretaceous 4,250-5,500 5-30				2,800
area (acres)			FORTIVOIR ROCK PROPERTY			
			ESERVOIR ROCK PROPERT	TIES		
Porosity (%)	25-28*** 35-40*** 60-65***	17-23 [†] 40-50 † 50-60 †				
		Ri	ESERVOIR FLUID PROPERT	TIES		
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.577615 ^{††} 870-965	.558570 ^{††} 988-1,016				.560 1,005
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	10,100	16,600-23,800				
		<u>ENI</u>	HANCED RECOVERY PROJ	ECTS	<u> </u>	L
Enhanced recovery projects Date started Date discontinued	. '					
						·
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						2,637,249 1967

Base of fresh water (ft.): 1,450-1,700


Remarks: Commercial gas deliveries began in May 1964.


 $\underline{\underline{a}}/$ Combined rate, triple-string completion (three strings of 2 7/3" tubing cemented in hole).

Selected References: Hill, F. L., 1970, Rice Creek Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 56, No. 1.

EAST RICE CREEK GAS FIELD

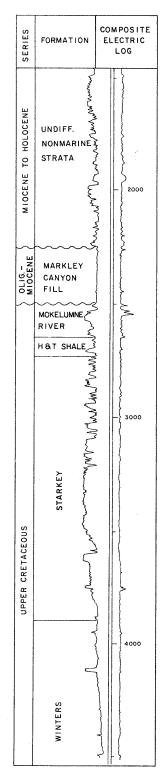
	_	T	Y
	SERIES	FORMATION	COMPOSITE ELECTRIC LOG
1	POST-EOCENE	UNDIFF NONMARINE STRATA	1000 MA 1000
	SECENE	PRINCETON SCANYON FILL	2000
		KIONE {	
	UPPER CRETACEOUS	CONTOURED HORIZON FORBES	
		DOBBINS	6000

MARCH 1980

COUNTY: TEHAMA

RICE CREEK, EAST, GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


		Present operator and well designation		Sec. T. & R.		(reet)	Pool (zone)	Strata & age at total depth
l	Discovery well	Oxy Petroleum, Inc. "NRC-Bettencourt" 1	McFarland Energy, Inc. "NRC-Bettencourt"	28 23N 2W	MD	5,450	Forbes	Forbes Late Cretaceous
	Deepest well	Trico Industries, Inc. "Rancho Capay Unit 4" 1	Trico Oil and Gas Co. "Rancho Capay Unit 4" 1	"	"	5,750		"

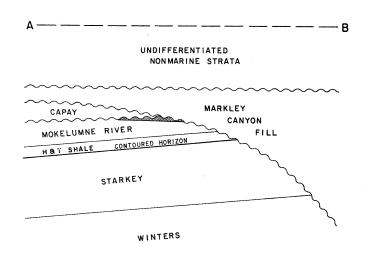
POOL DATA

POOL DATA							
ITEM	FORBES					FIELD OR Area data	
Discovery date Initial production rates Oil (bbl/day)	December 1978					-	
Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	1,695 1,115 1/4					·	
Initial reservoir pressure (psi) Reservoir temperature (*F) Initial oil content (STB/acft.)	1,270 111						
Initial gas content(MSCF/acft.). Formation Geologic age Average depth (ft.)	300-450 Forbes Late Cretaceous 4,950		,				
Average net thickness (ft.) Maximum productive area (acres)	16 60						
		RE	SERVOIR ROCK PROPERT	ries	<u> </u>	L	
Porosity (%)	17-21† 45-55†						
Swi (%) Sgi (%) Permeability to air (md)	45-55 †						
	RESERVOIR FLUID PROPERTIES						
Oil: Oil gravity (*API)							
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.577 970						
Water: Salinity, NaCl (ppm) T.D.S. (ppm)							
		ENH	IANCED RECOVERY PROJ	ECTS	<u></u>		
Enhanced recovery projects Date started Date discontinued							
		·					
Peak oil production (bbl) YearPeak gas production, net (Mcf)	296,517						
Year	1981						

Base of fresh water (ft.): 1,600

Remarks: Commercial gas deliveries began in January 1981.

SUTTER CO
Socramento Rivel


Approximate Truncation of Contoured Horizon

33

TIIN R3E

TION R3E

CONTOURS ON TOP OF STARKEY

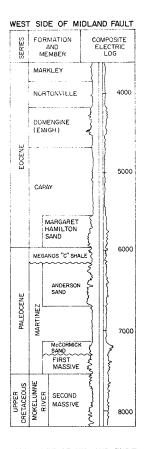
DECEMBER 1982

RIO JESUS GAS FIELD

COUNTY: YOLO

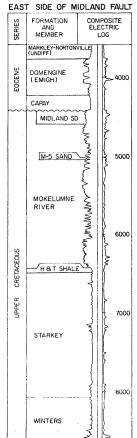
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Calif. Prod. Inc. "Jesus Maria 1	Shell Oil Co. "Jesus-Maria" 1	4 10N 3E	MD	4,504	Mokelumne River	Sacramento shale Late Cretaceous
Deepest well	Same as above	Same as above	"	"	"	"	"

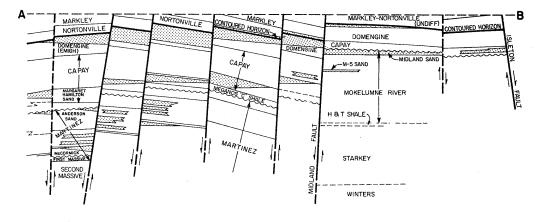

POOL DATA								
ITEM	MOKELUMNE RIVER					FIELD OR Area data		
Discovery date	July 1972 3,394 915 24/64							
Initial reservoir pressure (psi)	1,275 114 820-1,000	•			·			
Formation	Mokelumne River Late Cretaceous 2,470 50							
area (acres)	160	R	ESERVOIR ROCK PROPERT	ries				
Porosity (%)	32-34† 23-33† 67-77†							
		R	ESERVOIR FLUID PROPERT	ries				
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F								
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.607623 ^{††} 864-884							
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	·							
		ENI	HANCED RECOVERY PROJ	ECTS				
Enhanced recovery projects Date started Date discontinued								
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	357,312 1979							

Base of fresh water (ft.): 1,000

Remarks: Commercial gas deliveries began in January 1977.


RIO VISTA GAS FIELD

T4N R2E



T3N R2E	SOLUTIO CO CO GO FELLO CO CO CO CO CO CO CO CO CO CO CO CO CO
CONTOURS	ON TOP OF DOMENGINE

T4N R3E

DECEMBER 1979

COUNTY: CONTRA COSTA, SACRAMENTO and SOLANO

RIO VISTA GAS FIELD Cont.....

DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation		Sec. T. &			(icel)	Pool (zone)	Strata & age at total depth
ı	Discovery well	Amerada Hess Corp., Unit Opr. "RVGU" 55	Amerada Petroleum Corp. of Calif. "Emigh"	26 4N	2E	MD	4,485	Emigh	
	Deepest well	Chevron U.S.A. Inc. "Peter Cook" 15	Standard Oil Co. of Calif. "Peter Cook" 15	8 4N	3E	MD	15,050		Forbes Late Cretaceous

POOL DATA							
ITEM	SIDNEY	MARKLEY	NORTONVILLE	EMIGH (Domengine)	CAPAY	FIELD OR AREA DATA	
Discovery date	September 1977 1,490 731	September 1977 1,274 918	September 1950 190	June 1936 8,750 1,375	May 1948 3,010 1,670		
Bean size (in.)	- 1,110 116	1,190 116	1,230 135	1/2 1,715-1,915 141-149	1/4 1,930 150		
Initial gas content (MSCF/acft.). Formation	500-690 Markley Eocene 2,450 50	560-740 Markley Eocene 2,630 24	700 Nortonville Eocene 3,700-4,200 25	1,200-1,300 Domengine Eccene 3,800-4,300 40-315	800 Capay Eocene 4,500-5,100 20-40		
area (acres)						25,000	
	· · · · · · · · · · · · · · · · · ·	R	ESERVOIR ROCK PROPER	TIES		· 	
Porosity (%) Soj (%) Swj (%)	25-32 35-40***	26-32 35-40***	30* 35*	34 30	26* 45*		
Sgi (%) Permeability to air (md)	60-65 ** * 5-10	60-65*** 400-1,800	65* -	70	55*		
	W	R	ESERVOIR FLUID PROPER	TIES	photon in a second seco		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F							
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.580 1,009	.580 1,009	.595†† 1,010	.580~.604†† 1,000-1,050	.599†† 1,060		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)	-	4,590 4,703 1.36		6,100-9,500	8,600-15,600 - -		
		EN	HANCED RECOVERY PRO	JECTS			
Enhanced recovery projects Date started Date discontinued							
		•					
					***************************************	<u> </u>	
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						159,577,428 1945	

Base of fresh water (ft.): 1,900-2,900

Remarks: Commercial gas deliveries began in September 1937. Cumulative condensate production is 1,341,463 barrels. Effective January 1965, most of the field was unitized, with Amerada Petroleum Corp., Opr. (now Amerada Hess Corp., Unit Opr.) acting as unit operator.

Selected References: Burroughs, Ernest, 1967, Rio Vista Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 53, No. 2 - Part 2. Figure 2. Burroughs, Ernest, Beecroft, G. W., and Barger, R. M., 1968, Rio Vista Gas Field: Am. Assoc. Petroleum Geologists, Memoir No. 9, p. 93-101. COUNTY: CONTRA COSTA, SACRAMENTO and SOLANO

RIO VISTA GAS FIELDCont

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well							***************************************
Deepest well							

PO	OI	n	A	TA	ı

			POOL DATA					
ITEM	McCORMICK	PETERSEN				FIELD OR AREA DATA		
Discovery date	5,330 1,925 3/8	April 1966 400 125 3/8 4,860 195 800-1,300 Starkey Late Cretaceous 9,650 55						
·		R	<u> </u>	<u> </u>				
Porosity (%)	24-28 35-40 60-65 120	14-20† 45-50† 50-55†						
	RESERVOIR FLUID PROPERTIES							
Oil: Oil gravity (*API)								
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.599†† 1,060	.608†† 1,080						
Water: Salinity, NaCl (ppm)	10,500-15,200	7,700						
		EN	HANCED RECOVERY PROJ	ECTS				
Enhanced recovery projects Date started Date discontinued								
		,						
Peak oil production (bbl) YearPeak gas production, net (Mcf) Year								

Base of fresh water (ft.):

Remarks:

Selected References:

Railroad Commission of the State of Calif. and Calif. Div. of Oil and Gas, 1942, Rio Vista Gas Field in Estimate of Natural Gas Reserves of the State of Calif.: Case No. 4591, Special Study No. S-258, p. 245-251.

Soper, E. K., 1943, Rio Vista Gas Field in Geologic Formations and Economic Development of the Oil and Gas Fields of Calif.: Calif. Div. of Mines Bull. 118, p. 591-594.

COUNTY: CONTRA COSTA, SACRAMENTO and SOLANO

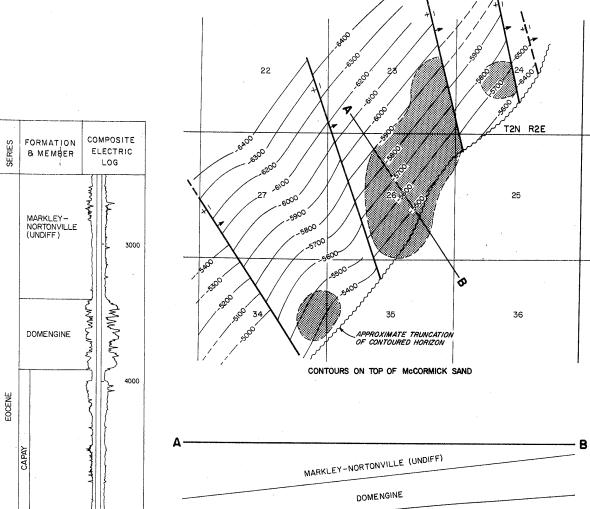
RIO VISTA GAS FIELDCont

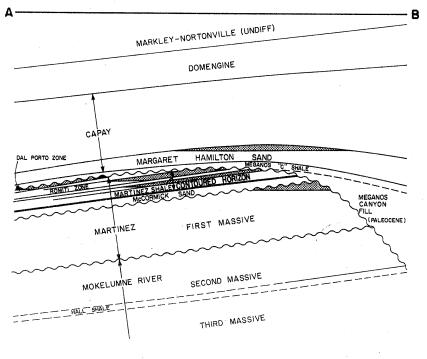
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well							
Deepest well							

			POOL DATA			
ITEM	MARGARET HAMILTON	MIDLAND	M-5	ANDERSON	MARTINEZ	FIELD OR AREA DATA
Discovery date	November 1936 4,160 <u>a</u> /	June 1943 5,700 <u>a</u> /	August 1943	August 1944 11,700 2,145	October 1966 4,250 1,810	
Flow pressure (psi)	290 3/4 2,415	2,060	1,635 5/8 2,210	1/2 2,550	3/8 2,550-3,000	
Reservoir temperature ("F") Initial oil content (STB/ac-ft.) Initial gas content (MSCF/ac-ft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	167 1,100 Capay Eocene 5,300 90	153 1,300 Mokelumme River Late Cretaceous 4,500 40-140	1,100 Mokelumne River Late Cretaceous 5,050 10	1,600 Martinez Paleocene 5,750 45	177-187 920-1,400 Martinez Paleocene 5,800-6,900 30-120	
		R	ESERVOIR ROCK PROPERT	TIES		
Porosity (%)	27 40	33 35	25	31 25	22-28 35-40	
Sgi (%)	60	65	70	75	60-65 15-180	
		R	ESERVOIR FLUID PROPER	TIES		T
Oil: Oil gravity (*API)	,					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.599†† 1,060	.616†† 1,025	.583†† 990	.601†† 1,070	.596†† 1,065	
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	15,400-18,800	11,000-14,000	11,300	10,100-24,000	15,400	
		ENI	HANCED RECOVERY PRO	JECTS		
Enhanced recovery projects Date started Date discontinued						
		,				
Peak oil production (bbl)						
Year Peak gas production, net (Mcf) Year						

Base of fresh water (ft.):


Remarks


a/ Open hole formation test.

Selected References: Corwin, C. H., 1953, Rio Vista Gas Field, Isleton Area: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 39, No. 1.

Frame, R. G., 1944, Rio Vista Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 30, No. 1.

RIVER BREAK GAS FIELD

DECEMBER 1979

UPPER CRETA

PALEOCENE

CRETACEOUS

MARTINEZ

MARGARET HAMILTON SAND

MARTINEZ SHALE

McCORMICK SAND

FIRST MASSIVE

SECOND MASSIVE

HALL SHALE

THIRD MASSIVE 7000

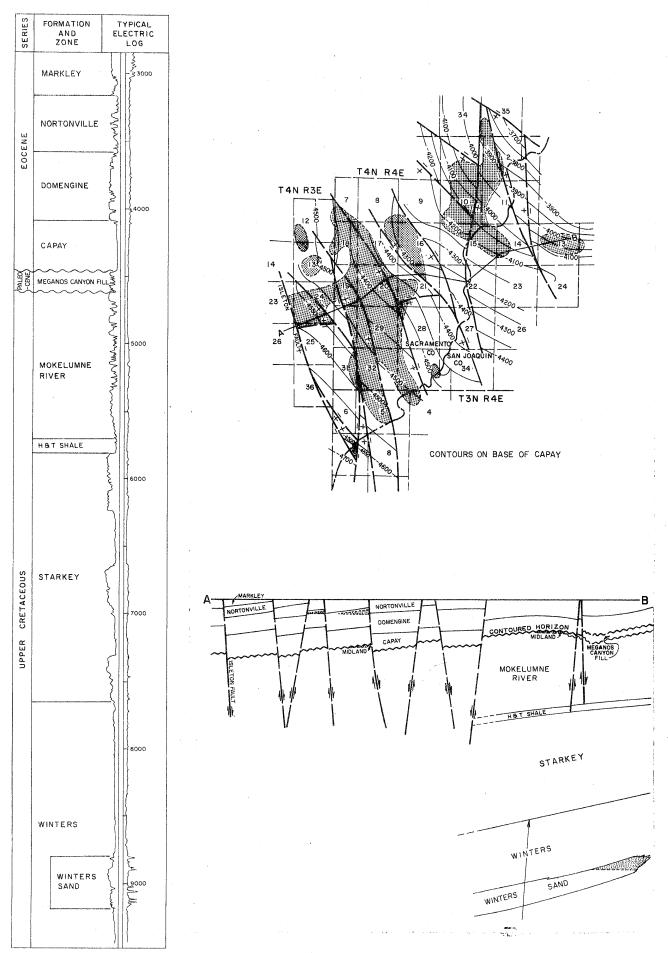
COUNTY: CONTRA COSTA

RIVER BREAK GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

-		Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Totai depth (feet)	Pool (zone)	Strata & age at total depth
l	Discovery well	Gulf Oil Corp. "Sesnon-Gulf" 1	Helm Co. & Robt. Sumpf "Sesnon-Gulf" 1	24 2N 2E	MD	6,924	Dal Porto	
	Deepest well	Western Continental Operating Co. "Audrey Smith" I	Same as present	35 2N 2E	MD	11,643		Confidential

POOL	DATA
------	------


_			FUUL DATA			
ITEM	HAMI LTON	DAL PORTO	ROMITI	FIRST MASSIVE		FIELD OR AREA DATA
Discovery date	June 1968	December 1964	January 1968	June 1968		
Initial production rates Oil (bbl/day)						
Gas (Mcf/day) Flow pressure (psi)	1,645	17,000	3,590	3,190		
Flow pressure (psi)	1,470 15/64	1,830 5/8	1,750 20/64	1,910 18/64		
Bean size (in.)Initial reservoir	13/04	3/6		i .		
pressure (psi)	2,220	2,500	2,500	2,520		'
Reservoir temperature (°F)	125	126	126	126		
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.).	900	1,000	1,000	940 .		
Formation	Capay	Martinez	Martinez	Martinez		
Geologic age	Eocene	Paleocene	Paleocene	Paleocene 5,660		
Average depth (ft.)	5,015 30	5,450 40	5,540 25	60	1	
Average net thickness (ft.) Maximum productive	. 30	10	-			
area (acres)		1				770
, , , , , , , , , , , , , , , , , , , ,	: 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	//0
		R	ESERVOIR ROCK PROPER	T	1	<u> </u>
Porosity (%)	24	23*	23	22		
Soj (%)	42	42*	42	44	1	
Swi (%)	58	58*	58	56		
Permeability to air (md)						
			ESERVOIR FLUID PROPER	DTIEC	<u> </u>	l
		<u> </u>	ESERVOIR FEOID FROFER	VIIE3		<u> </u>
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution	·				,	,
GOR (SCF/STB)						
Gas:			j			
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.586 1,060	1,020	1,020	.586 1,100		
Water:		_	_	7,000		
Salinity, NaCl (ppm)	_	7,026	_	7,000		
T.D.S. (ppm) R _W (ohm/m) (77°F)	₹	1.05	-	-		
KW (Onn) (// F)		1				<u> </u>
		EN	HANCED RECOVERY PRO	DJECTS		T
Enhanced recovery projects Date started Date discontinued						
·		,				
	-					
Peak oil production (bbl)						
YearPeak gas production, net (Mcf)						1,648,021 1971

Base of fresh water (ft.): 250

Remarks: Commercial gas deliveries began in December 1966.

Selected References: Williams, P. A., 1972, River Break Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 58, No. 1.

RIVER ISLAND GAS FIELD

COUNTY: SACRAMENTO and SAN JOAQUIN

RIVER ISLAND GAS FIELD Cont.....

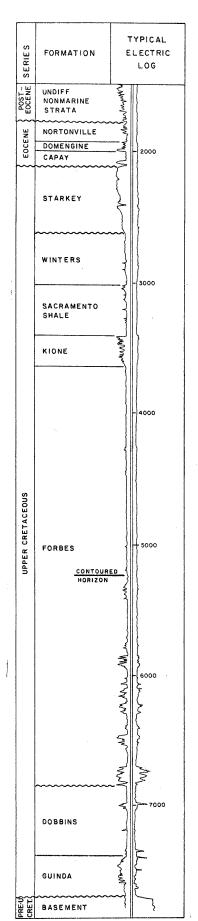
DISCOVERY WELL AND DEEPEST WELL

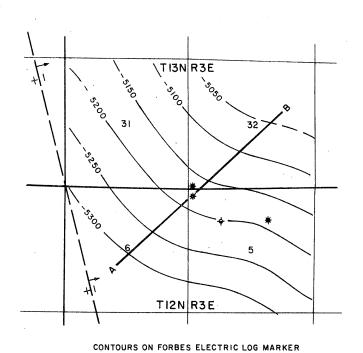
	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Union Oil Company of California "River Islands Land Co." 1	Brazos Oil and Gas Co. "River Islands Land Co." 1	29 4N 4E	MD	5,158	Domengine	
Deepest well	Union Oil Company of California "S.R. Unit 1" 1		17 4N 4E	MD	10,902	unnamed	Winters Late Cretaceous

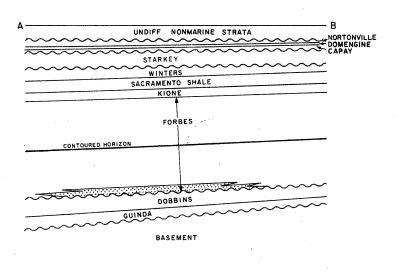
					Late Cretaceous				
		POOL DATA	,		EIELD OB				
MARKLEY	NORTONVILLE	DOMENGINE	CAPAY	MIDLAND	FIELD OR AREA DATA				
June 1963	October 1953	June 1950	August 1957	September 1950	,				
2,200 1,550 1/4	4,000 1,000 20/64	4,100 1,050 3/8	1,985 1,230 1/4	1,770 1,705 3/8					
1,285 100	1,780 106	1,860 107	1,760 113	1,940 114					
630-840 Markley Eocene 3,110 5	900-1,200 Nortonville Eocene 3,600 5	1,000-1,300 Domengine Eocene 3,730 20	900-1,300 Capay Eocene 4,230 20	1,100-1,400 Mokelumne River Late Cretaceous 4,350 40					
	PI	ESERVOIR ROCK PROPER	PTIES		4,910				
		1		T					
26-32	26-31	28-32	27-33	29-34					
35-40 60-65 -	35-40 60-65 340	30-40 60-70 -	30-40 60-70	35-40 60-65					
RESERVOIR FLUID PROPERTIES									
	·								
.576 970	.574 1,010	.565†† 1,005	.574 1,010	.576 970					
1,200	1,700-6,800	1,700-7,000	4,500-7,700	9,400	·				
	ENI	HANCED RECOVERY PRO	DIECTS		y				
					-				
					7,394,699 1969				
	June 1963 2,200 1,550 1/4 1,285 100 630-840 Markley Eocene 3,110 5 26-32 35-40 60-65 .576 970	June 1963 October 1953 2,200	Markley	Markley	MARKLEY				

Base of fresh water (ft.): 100-2,000

Remarks: Commercial gas deliveries began in October 1950. Several of the gas-sand stringers within the producing zones have been given local names by operators.


Selected References: Corwin, C. H., 1953, River Island Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 39, No. 1.


COUNTY: SACRAMENTO and SAN JOAQUIN


RIVER ISLAND GAS FIELDCont

DISCOVERY WELL AND DEEPEST WELL Total depth (feet) Strata & age at total depth Present operator and well designation Original operator and well designation Sec. T. & R. B.&M. Pool (zone) Discovery well Deepest well **POOL DATA** FIELD OR AREA DATA ITEM UNNAMED WINTERS August 1963 December 1958 2,800 7,000 1,850 2,550 20/64 2,060-2,400 3,955 163 119-128 1.200-1.400 1,600-1,800 Mokelumne River Late Cretaceous 4,700-5,500 Winters Late Cretaceous 8,450 5-40 30 RESERVOIR ROCK PROPERTIES 26 35-40 60-65 35-40 RESERVOIR FLUID PROPERTIES as: Specific gravity (air = 1.0)...... Heating value (Btu/cu. ft.)...... .57011 .576 970 Water: Salinity, NaCl (ppm) T.D.S. (ppm) R_W (ohm/m) (77°F) 4,800 **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects. Date started...... Date discontinued Peak oil production (bbl) Year Peak gas production, net (Mcf) Year Base of fresh water (ft.): Remarks: Selected References:

ROBBINS GAS FIELD

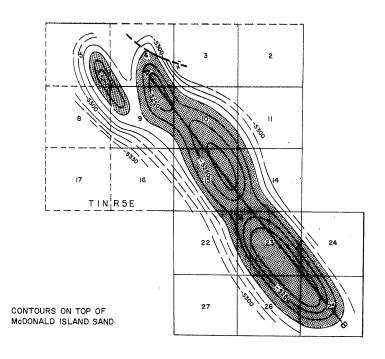
COUNTY: SUTTER

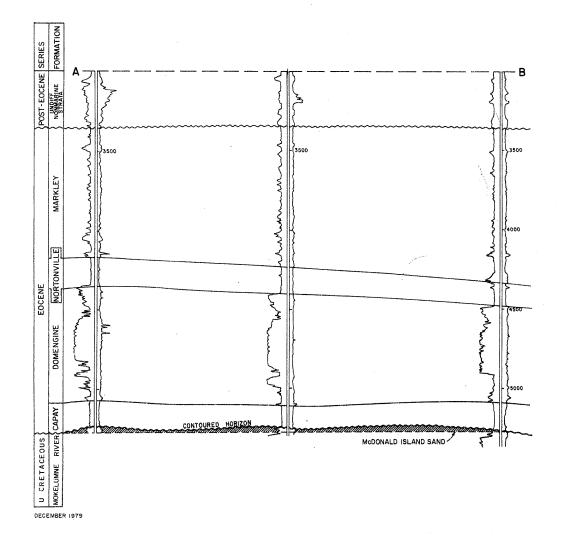
ROBBINS GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

-		Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
ı	Discovery well	Sutter Gas Co. "Sutter Gas Company" 1	Same as present	32 13N 3E	MD	7,405	Forbes	
	Deepest well	Drilling and Exploration Co., Inc. "Magoon Estate, Ltd." 1	Same as present	5 12N 3E	MD	7,631		basement pre-Lt. Cret.

POOL DAT	А
----------	---


			POOL DATA			
ITEM	FORBES					FIELD OR AREA DATA
Discovery dateInitial production rates	February 1979					
Oil (bbl/day)	5,000					
Gas (Mcf/day) Flow pressure (psi)	2,200					
Bean size (in.)	•					
Initial reservoir	2,964					
pressure (psi) Reservoir temperature (°F)	167					
Initial oil content (STB/acft.)						
Initial gas content (MSCF/acft.). Formation	590-890 Forbes					
Geologic age	Late Cretaceous					
Average depth (ft.)	7,100					
Average net thickness (ft.) Maximum productive	75					
area (acres)	40					
		Ri	ESERVOIR ROCK PROPERT	ries		
Porosity (%)	17-23†					
So; (%)	45-50†					
Swi (%)	50-55†					
Permeability to air (md)						
		Ri	ESERVOIR FLUID PROPERT	TIES		
Oil:						
Oil gravity (°API)						
Sulfur content (% by wt.) Initial solution						
GOR (SCF/STB)					·	
Initial oil FVF (RB/STB),						
Bubble point press. (psia) Viscosity (cp) @ °F		1				
viscosity (cp) @ 1				}		
Gas:	.913					
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	141					
Water:						
Salinity, NaCl (ppm)						
T.D.S. (ppm) R _W (ohm/m) (77°F)						
KW (Onm/m) (// F)				<u> </u>		
		ENI	HANCED RECOVERY PRO	JECTS		
Enhanced recovery projects						
Date started Date discontinued						
Date discontinued						
			1			
*						
		,				
Peak oil production (bbl)						
Year						
Peak gas production, net (Mcf) Year						
		1		1	1	


Base of fresh water (ft.): 500-700

Remarks: Commercial gas deliveries have not yet begun. In March 1961, Drilling and Exploration Co., Inc. "Magoon Estate, Ltd." 1 was tested over the interval 6,659 - 6,687 feet; initial daily production was 3,000 Mcf, flow pressure 1950 psi, 7/16-inch bean.

The gas would not burn; a sample was analyzed and found to contain 88% nitrogen.

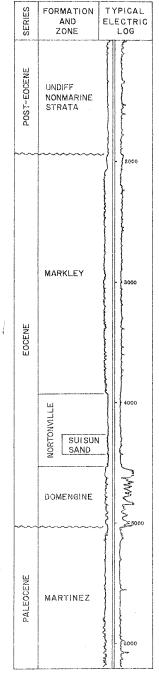
ROBERTS ISLAND GAS FIELD

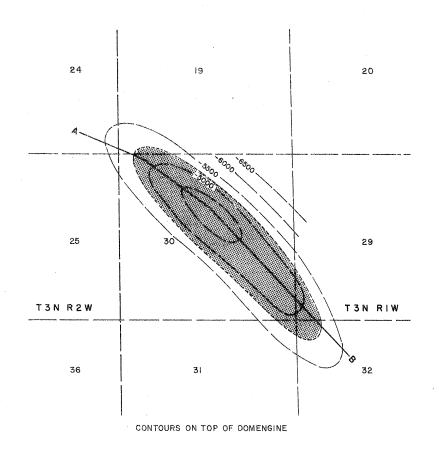
COUNTY: SAN JOAQUIN

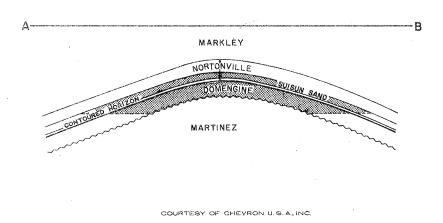
ROBERTS ISLAND GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	·	Present operator and well designation	Original operator and well designation	Sec. 1	г. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
	Discovery well	Arcady Oil Co. "Woods Community 2" 1	Standard Oil Co. of Calif. "Woods Community 2" l	23	N 5E	MD	5,254	McDonald Island sand	
CHARGE COLUMN	Deepest well	Chevron U.S.A. Inc. "Woods Community" - 2-5	Standard Oil Co. of Calif. "Woods Community" 2-5	26 1	IN 5E	MD	11,426		Undiff. Marine Late Cretaceous


P	O	o	L	D.	A	T	A


		r	FOOL DATA	T	,				
ITEM	McDONALD ISLAND SAND	UNNAMED				FIELD OR AREA DATA			
Discovery date	August 1942	May 1974			·				
Flow pressure (psi) Bean size (in.)	5,610 1,765 3/8	2,030 2,317 3/16							
Initial reservoir pressure (psi)	2,340 127	2,750 139		,	·	·			
Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	1,500-1,800 Mokelumne River Late Cretaceous 5,250 10	1,600-1,900 Mokelumne River Late Cretaceous 6,301 3				1,730			
		RE	ESERVOIR ROCK PROPERT	ries	L				
Porosity (%)	29-33***	29-33***							
Soj (%)	25 – 30 **** 70 – 75 ***	25-30*** 70-75***							
		RE	ESERVOIR FLUID PROPERT	R FLUID PROPERTIES					
Oil: Oil gravity (*API)									
Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ °F	·					•.			
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.578†† 955	.620†† 861							
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	5,000-12,000								
		EN	ANCED RECOVERY PROJ	ERY PROJECTS					
Enhanced recovery projects Date started				,					
		,							
						u.			
Peak oil production (bbl) YearPeak gas production, net (Mcf)						3,237,588 1960			
Year						3,237,58 1960			


Remarks: The northwest portion of the field was formerly known as the Whiskey Slough area. Commercial gas deliveries began in October 1942.

Selected References: Huey, W. F., 1958, Roberts Island Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 44, No. 1.

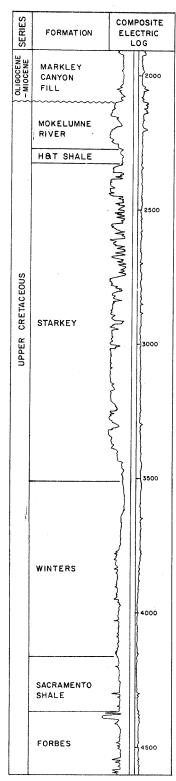
RYER ISLAND GAS FIELD

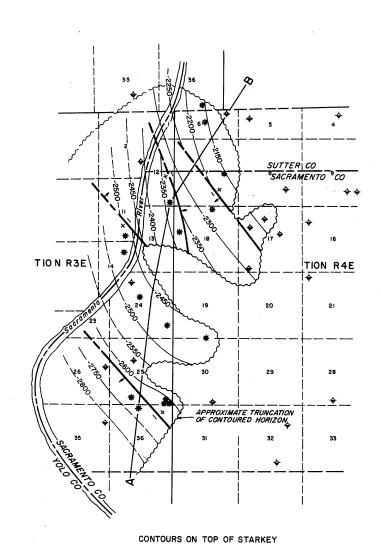
DECEMBER 1979

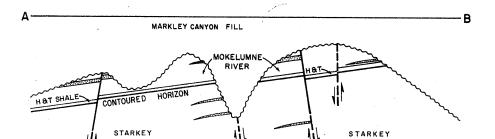
RYER ISLAND GAS FIELD

COUNTY: SOLANO

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "Ryer" 1	Standard Oil Co. of Calif. "S.O. Oper Ryer" 1	30 3N 1W	MD	8,942	Suisun and Domengine	Martinez Paleocene
Deepest well	Same as above	"	"	"	"	11	"


		T	POOL DATA			FIELD OR		
ITEM	SUISUN	DOMENGINE				AREA DATA		
Discovery date	July 1967 3,875	July 1967						
Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi)	1,305 1/2 2,410	1,725 1/2 2,405						
Initial gas content (MSCF/acft.).	130 970	133				•		
Formation	Nortonville Eocene 4,470 60	Domengine Eocene 4,750 200	·					
area (acres)						400		
			RESERVOIR ROCK PROPER	TIES				
Porosity (%)	20	24						
Soj (%)	35 65	. 30						
		, ,	RESERVOIR FLUID PROPER	TIES				
Oil: Oil gravity (*API)								
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.600†† 1,070	.610†† 1,100						
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)								
	ENHANCED RECOVERY PROJECTS							
Enhanced recovery projects Date started Date discontinued								
Peak oil production (bbl)								
Peak gas production, net (Mcf) Year						13,437,832 1973		


Base of fresh water (ft.): 1,100

Remarks: There are seven wells in the field of which five are classified as onshore wells and two as offshore wells. The offshore wells and one onshore well were drilled from platforms. Cumulative condensate production is 118,139 barrels.

SACRAMENTO AIRPORT GAS FIELD

DECEMBER 1979

COUNTY: SACRAMENTO, SUTTER and YOLO

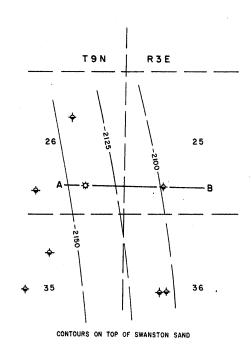
SACRAMENTO AIRPORT GAS FIELD

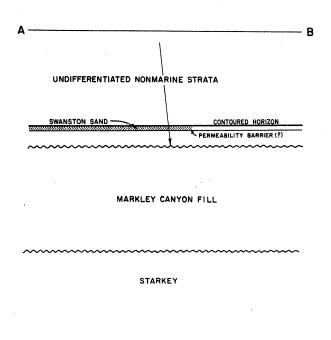
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & F	t. 8	3.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Silva-Betts" 1-25	Same as present	25 10N 3	E	MD	3,062 <u>a</u> /	Mokelumne River	
Deepest well	Buttes Resources Co. "Natomas" 3	Buttes Gas and Oil Co. "Natomas" 3	6 10N 4	Е	MD	4,500		Forbes Late Cretaceous

POOL DAT	A
----------	---

POOL DATA						
ITEM	MOKELUMNE RIVER	STARKEY				FIELD OR AREA DATA
Discovery date	November 1973	January 1974				
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	235 1,000	170-210 1,080-1,250				
Initial reservoir pressure (psi)	1,080 96	1,200-1,330 101-104				
Initial gas content (MSCF/acft.). Formation	460-850 Mokelumne River Late Cretaceous 2,200 23	600-910 Starkey Late Cretaceous 2,600-2,900 12-15				
Maximum productive area (acres)						1,620
		RE	SERVOIR ROCK PROPERT	IES		
Porosity (%)	29-35†	28-33†				•
Swi (%) Sgi (%) Permeability to air (md)	26-50† 50-74†	24-45† 55-76† 50-100				
		RE	SERVOIR FLUID PROPERT	TES		
Oil: Oil gravity ('API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.617717 619-863	.632720 611-827				
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)						
KW (OHM/M) (// F)		EN⊮	IANCED RECOVERY PROJ	ECTS		
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						1,808,396 1978


Base of fresh water (ft.): 1,400-1,700


Remarks: Commercial gas deliveries began in January 1977.

a/ Directional well; true vertical depth is 2,998 feet.

SACRAMENTO BYPASS GAS FIELD (Abandoned)

SERIES	FORMATION AND ZONE	TYPICAL ELECTRIC LOG
MIDCENE TO HOLDCENE	UNDIFF NORMARIN STRATA SWANSTON SAND	\$2000
OLIGOCENE MIOCENE	MARKLEY CANYON FILL	3000
~	STARKEY	5000
	WINTERS	-6000
	SACRAMENTO SHALE	
		- 7000
UPPER CRETACEOUS		
	FORBES	9000
		* 10000
-	OBBINS	\$ 11000

COUNTY: YOLO

SACRAMENTO BYPASS GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

	Present o	Present operator and well designation			operator and	well designa	ıtion	Sec.	Sec. T. & R.		B.&M.	Total depth (feet)	Pool (zone	Strata & age at total depth
Discovery well Deepest well	Supreme Oil and Gas Corp, "Swanston" 1 Same as above			Phillips Pet	troleum Co.	"Swanston	' 1	26 9N 3E		MD "	11,194	Swanston	Dobbins Late Cretaceous	
					POO	L DATA								
ITEM	l	SWANSTON											-	FIELD OR AREA DATA

ITEM	SWANSTON					FIELD OR Area data
Discovery date	925 86 600 undiff. nonmarine Miocene to Holocene 2,160 8					
area (acres)	10	RIF	SERVOIR ROCK PROPERT	rifs	<u> </u>	
Porosity (%)	30** 70**		,			
		RE	SERVOIR FLUID PROPERT	ries T		
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77°F)	.621†† 850 1,000	•				
, , , , , , , , , , , , , , , , , , , ,		EN#	ANCED RECOVERY PROJ	IECTS		<u> </u>
Enhanced recovery projects Date started Date discontinued						
	¥1.					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	1,201 1967					

Base of fresh water (ft.): 2,100

Remarks: The well produced gas from December 1967 to April 1968. The field was abandoned in June 1974. Only one well was completed and cumulative gas production was 2,179 Mcf.

SARGENT OIL FIELD

COUNTY: SANTA CLARA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. &	R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Sargent Oil Co. No. 1	Watsonville Oil Co. No. 1	36 11S	3E	MD	1,620	Tar, Purisima, and Monterey	
Deepest well	Occidental Petroleum Corp. "Sargent" 1	Same as present	36 11S	3E	MD	6,972	,	Monterey Miocene

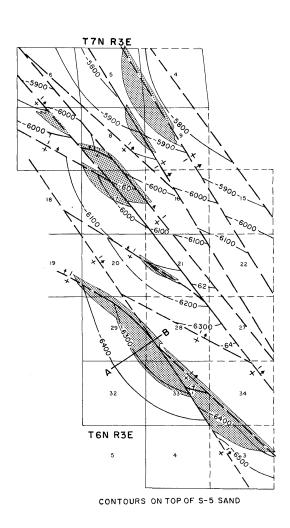
		POOL DATA			
TAR	PURISIMA	MONTEREY			FIELD OR AREA DATA
1906	1906	1906			
-		Hydrostatic			
Purisima Pliocene 300 75	Purisima Pliocene 600 130	Monterey Miocene 850-1,100 30-50			70
	RI	ESERVOIR ROCK PROPERT	ries		
-	. 35				
-	217			-	
	RI	ESERVOIR FLUID PROPERT	TIES		
10	16-25 .62	17 -			
-	215	-			·
				,	
- - -	20,600 22,977 0.29				
	ENI	HANCED RECOVERY PRO	JECTS		
	cyclic steam October 1967 November 1967				
					63,780 1909
	Purisima Pliocene 300 75	Purisima	TAR PURISIMA MONTEREY 1906 1906 1906 1906 -	TAR	TAR PURISIMA MONTEREY 1906 1906 1906 1906 Hydrostatic Purisima Purisima Puriceme Miocene 850-1,100 300 600 850-1,100 30-50 RESERVOIR ROCK PROPERTIES - 35 - 217 RESERVOIR FLUID PROPERTIES 10 16-25 17 - 62 215 22,977 - 0,29 0,29 22,977 - 0,29 ENHANCED RECOVERY PROJECTS cyclic steam October 1967

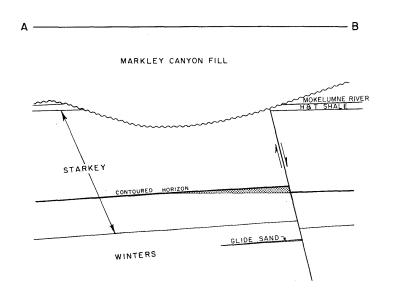
Base of fresh water (ft.): 200

Remarks: As early as 1861, oil was refined from asphaltum taken from "tar springs" in the vicinity of the field. Exploratory wells were drilled as early as 1886. Artesian salt water flow was reported at 1,615. A blowout was reported in one well at 1,082.

Allen, J. E., 1946, Geology of the San Juan Bautista Quadrangle, Calif.: Calif. Div. of Mines Bull. 133, p. 73-74.

Armstrong, Charles F., 1980, Environmental Geologic Analysis of the Tar Creek South Study Area, Santa Clara County, Calif.: Calif. Div. of Mines and Geology, p. 10-11.


Calif. State Mining Bureau Bull. 69, 1914, p. 470 and 506.


Davis, F. F., 1954, Mines and Mineral Resources of Santa Clara County, Calif.: Calif. Div. of Mines, Calif. Journal of Mines and Geology, Vol. 50, No. 2, p. 383-385.

Michelin, James, 1943, Sargent Oil Field: Calif. Div. of Mines Bull. 118, p. 23, 77, 79, and 475.

SAXON GAS FIELD

SERIES	FORMATION & MEMBER	COMPOSITE ELECTRIC LOG
MIOCENE TO HOLOÇENE	UNDIFF NONMARINE STRATA	2000
OLIG- MIO.	MARKLEY CANYON	
EOCENE	MARKLEY NORTONVILLE DOMENGINE CAPAY	3000
~~~	MOKELUMNE RIVER	4000
	STARKEY  CONTOURED HOF	5000
	GLIDE SAND	6000
	WINTERS	7000
CEOUS	SACRAMENTO SHA	
UPPER CRETACEOUS		10000
	FORBES	11000
	UNDIFF DOBBINS SHALE, GUINDA, AND FUNKS EQUIVALENTS	13000
PRE-U.CRET.	SITES	15000
h r	BASEMENT COMP	





**SAXON GAS FIELD** 

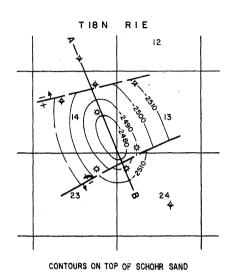
COUNTY: YOLO

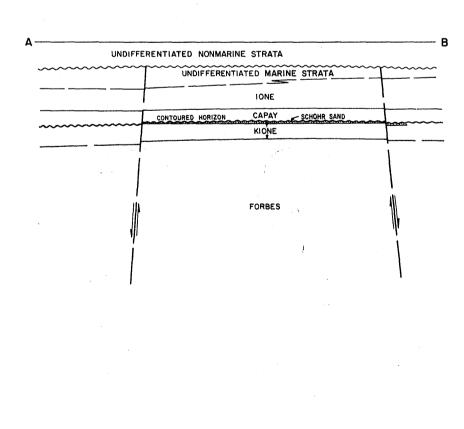
#### **DISCOVERY WELL AND DEEPEST WELL**

	Present o	operator and well designa	tion	Original o	perator and well designati	on	Sec.	r. & R	t. B	.&M	Total depth (feet)	Pool (zone	Strata & age ) at total depti
Discovery well	Aminoil USA	, Inc. "H & C-Glide Co	lby" l	Hunnicutt & (	Camp Drilling Co. "Glid	.e-	29	7N 3	Е	MD	8,907	Glide	
Deepest well	Exxon Corp.	"John C. Maxwell" 1		Humble Oil &	Humble Oil & Refining Co. "John C. Maxwell"			7N 3	Е	MD	13,060		Dobbins Late Cretace
					POOL DATA								
ITEN	1	K-4 SAND	UN	INAMED	GLIDE								FIELD OR AREA DATA
Discovery date	ates	November 1968	Apa	ril 1973	February 1968								
	(psi)	4,850 2,414 20/64	2	5,000 2,150 5/16	4,950 2,225 20/64								
pressure (psi) Reservoir temperat Initial oil content (	ure (°F) STB/acft.)	2,865		3,100 125	3,355 134								
nitial gas content ( Formation Geologic age Average depth (ft. Average net thickn Maximum producti	)ess (ft.)	1,400-1,800 Starkey Late Cretaceous 6,280 30	Wi Late (	70-1,200 inters Cretaceous 5,820 8	790-1,300 Winters Late Cretaceous 7,050 10	:							
area (acres)													1,530
				RE	SERVOIR ROCK PROPERT	1ES							
Porosity (%) Soj (%)	***************************************	26-31 †	1	19-25†	19-25†								
Swi (%) Sgi (%) Permeability to air		30-35 [†] 65-70 [†]		45-55† 45-55†	45-55 † 45-55 †								
			L	RE	SERVOIR FLUID PROPERT	TES							
Oil:  Oil gravity (*API Sulfur content (* Initial solution GOR (SCF/S) Initial oil FVF (* Bubble point pre Viscosity (cp) @	% by wt.) RB/STB) ess. (psia)	<b>4</b>											
Gas: Specific gravity Heating value (E	(air = 1.0) Btu/cu. ft.)	.600 860		.608 900	.600 840							-	
Vater: Salinity, NaCl( T.D.S.(ppm) R _w (ohm/m)(7	***************************************	•		-	11,370								
				ENF	IANCED RECOVERY PROJ	ECTS							
Enhanced recovery	projects												
Date started Date discontinu	ied												

Base of fresh water (ft.): 2,500

Peak oil production (bbl)
Year ......
Peak gas production, net (Mcf)
Year .....


Remarks: Commercial gas deliveries began in January 1970.


Selected References:

2,825,8**9**1 1979

# SCHOHR RANCH GAS FIELD (Abandoned)

SERIES	FORMATION AND ZONE	TYPICAL ELECTRIC LOG
POST-EOCENE	UNDIFF NONMARINE STRATA	
	SIRAIA	
EOCENE	IONE .	>
	CAPAY	
~	SCHOHR SD	
	KIONE KO	à
UPPER CRETACEOUS	FORBES	4000
	DOBBINS	
U. CRET.	GUINDA	
PRE-	BASEMENT	-     L ₂



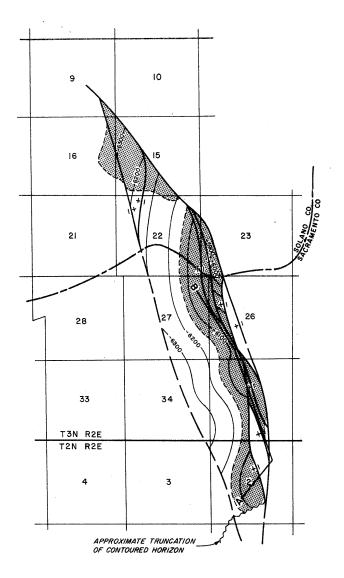


COUNTY: BUTTE

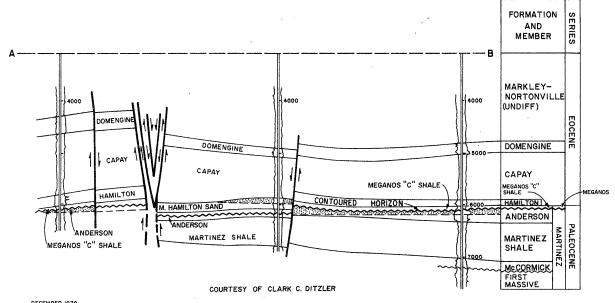
## SCHOHR RANCH GAS FIELD (ABD)

#### DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation	Original operator and well designation	Sec. T. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
ı	Discovery well	Exxon Corp. "Elna B. Schohr" 1	Humble Oil & Refining Co. "Elna B.	23 18N 1E	MD	4,775	Schohr	
	Deepest well	Exxon Corp. "Elna B. Schohr" 2	Schohr" 1 Humble Oil & Refining Co. "Elna B. Schohr" 2	14 18N 1E	MD	5,830		basement pre-Late Cret.


#### **POOL DATA**

			POOL DATA			
ITEM	SCHOHR					FIELD OR AREA DATA
Discovery date	March 1957					
Oil (bbl/day)	5,073 800 1/2					
Initial reservoir pressure (psi) Reservoir temperature (°F)	1,220 95	•				
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation	850 Kione Late Cretaceous					
Geologic age  Average depth (ft.)  Average net thickness (ft.)  Maximum productive	2,570 15					
area (acres)	360					
		Ri	SERVOIR ROCK PROPER	TIES	Y-1177-1170-1170-1170-1170-1170-1170-117	P
Porosity (%)	30* 25*					·
Swi (%) Sgi (%) Permeability to air (md)	75 <b>*</b>					
		RE	SERVOIR FLUID PROPER	TIES		
Oil: Oil gravity (*API)						
Viscosity (cp) @ °F	.623††					
Heating value (Btu/cu. ft.)  Water: Salinity, NaCl (ppm)	840 4,300					
T.D.S. (ppm)	,					
		ENH	IANCED RECOVERY PRO	JECTS		
Enhanced recovery projects Date started Date discontinued						
		,				
Peak oil production (bbl) YearPeak gas production, net (Mcf)	754,974					
Year	1960					


Base of fresh water (ft.): 1,200

Remarks: Commercial gas deliveries began in December 1959. The field was abandoned in March 1970. Four wells were completed and cumulative gas production was 2,112,993 Mcf.

### SHERMAN ISLAND GAS FIELD



CONTOURS ON TOP OF ANDERSON SAND

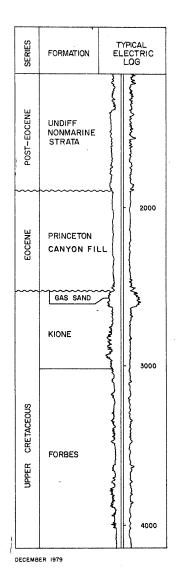


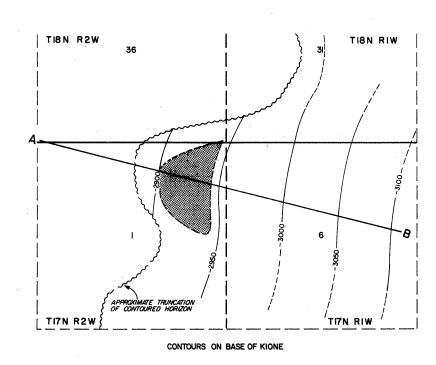
COUNTY: CONTRA COSTA, SACRAMENTO and SOLANO

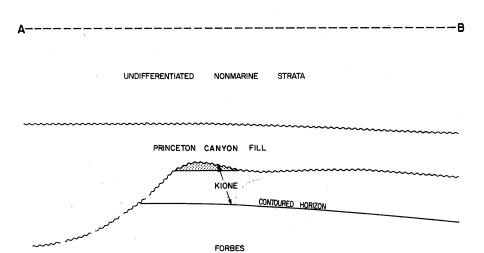
#### SHERMAN ISLAND GAS FIELD

#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec.	T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Aminoil USA, Inc. "Upham" 1	Signal Oil & Gas Co. "Upham" 1	26	3N	2E	MD	7,500	Anderson	
Deepest well	Occidental Petroleum Corp. "Upham" 1	Same as present	34	3N	2E	MD	12,067		D-zone Late Cretaceous


#### POOL DATA


			POOL DATA			
ITEM	NORTONVILLE	HAMILTON	ANDERSON	1st MASSIVE ·	·	FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	July 1970	April 1966	September 1965	June, 1980		
Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	1,248 1,540 3/16	2,297 1,835 1/4	5,770 2,163 21/64	899 1290		
pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	1,874 143	2,591 149	3,112 152	166		
Initial gas content (MSCF/ac_ft.). Formation	890 Nortonville Eocene 4,770 10	1,000-1,300 Capay Eocene 5,750 75	1,700-2,000 Martinez Paleocene 6,100 50	Martinez Paleocene 6,700 25		1,660
		RE	SERVOIR ROCK PROPER	TIFS	<u> </u>	1,000
Porosity (%)	25**	25-29***	29-32***	22***		
So; (%)	35** 65**	40-45*** 55-60***	30-35*** 65-70***	44 *** 56 ***		
		RE	I Servoir fluid proper	TIES		<u> </u>
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.570 985	.593 1,016	.593 1,028	.662 1126		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)		1,810	10,000	-		
æ (omn/m) (// r) mmmmmm		ENH	ANCED RECOVERY PRO	IFCTS	<u> </u>	
Enhanced recovery projects Date started Date discontinued						
		. ,				
Peak oil production (bbl) Year						5,629,045 ^1971


Base of fresh water (ft.): 800

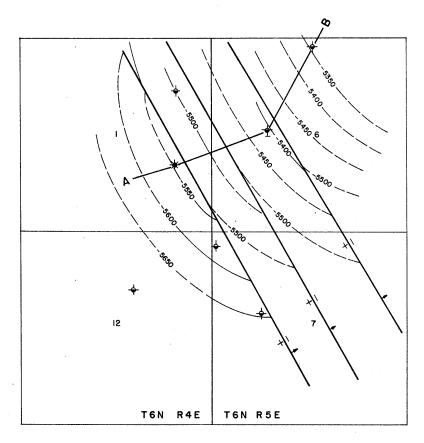
Remarks: Commercial gas deliveries began in October 1967. Condensate production in 1979 was 930 barrels; cumulative condensate production was 95,945 barrels.

Selected References: Ditzler, C. C., 1972, Sherman Island Gas Field in Selected Papers to San Joaquin Geological Society, Vol. 4, p. 21-25.

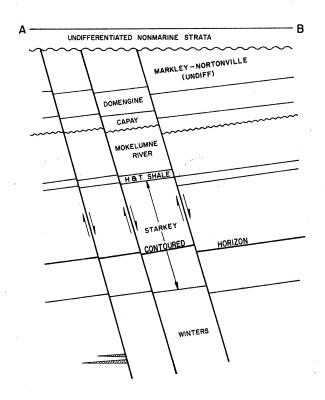







COUNTY: COLUSA

### STEGEMAN GAS FIELD


* .	Present o	perator and well designa	tion	Origina	l operator	and well design	ition	Sec. T. & R.	R & M	Total depth	Pool (zone)	Strata & age
iscovery well		Co. "Thousand Acre Ran		Same as pr				1 17N 2W	MD	(feet) 4,085	Kione	Forbes
eepest well	Same as abo	ove		**				. "	"	"	"	Late Cretace
	TXO FR	COD COPP. "THOS	GNAZ	MERS RAI	NOH "   PC	OOL DATA		Ŋ	n	7850	FORBES	b
ITEM		KIONE	FORE	<b>3</b> E.S								FIELD OR AREA DATA
Discovery date	es	July 1976										
Oil (bbl/day) Gas (Mcf/day) Flow pressure (p Bean size (in.)	si)	13,000										
nitial reservoir pressure (psi)		1,110							İ			
leservoir temperatur nitial oil content (ST nitial gas content (M	B/acft.)	110 620-670										
ormation		Kione Late Cretaceous										
Geologic age	s (ft.)	2,490 25										
Aaximum productive area (acres)	: 1	40										
					RESERVOI	R ROCK PROPE	RTIES					
orosity (%)		27-29***	,	· · · · · · · · · · · · · · · · · · ·	T				Т			
oj (%) wi (%)		30*										
gi (%) ermeability to air (r		70*										
	•				RESERVOI	R FLUID PROPE	RTIES					
Dil: Oil gravity (*API) Sulfur content (% Initial solution GOR (SCF/STB Initial oil FVF (RB Bubble point press Viscosity (cp) @ *	by wt.)											
ias: Specific gravity (ai Heating value (Btu Vater: Salinity, NaCl (pp	r = 1.0) l/cu. ft.)	928										
T.D.S. (ppm) R _W (ohm/m) (77°	F)		A. (1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	É	JHANCED	RECOVERY PRO	NECTS	***************************************				
		T		E.I.	IIIAIICED	KECOVERT PRO	JEC 13		Т			
nhanced recovery p Date started Date discontinued												
	,											
•												
			1									
				,		-						
				F			-					
eak oil production Yeareak gas production, Year	net (Mcf)	497,528 1979										
ase of fresh water (	ft.): 1,900	<u> </u>		1								

### STONE LAKE GAS FIELD

SERIES		RMATION AND EMBER			
POST-EOCENE	1	UNDIFF DNMARINE STRATA	Jaropa Sarahahan Baranas Sarah	- 2	2000
EOCENE	NO	IARKLEY- RTONVILL UNDIFF)	in The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of	1	3000
EOC	DC	MENGINE	اساكساكممار	}	
		CAPAY			
	MO	KELUMNE RIVER	my lenterment my holder Minus Martines	,	4000
	на	T SHALE			
		S-1	3	}	
		\$ <b>-</b> 2	A Company		5000
	ΕΥ	S-3	3	}	
ETACEOUS	STARKEY	S-4	٦,		
UPPER CRE		S-5	lyword warmy	, and a second	6000
		WINTERS GAS SAND	s 2		7000



CONTOURS ON TOP OF S-5 SAND



DECEMBER 1979

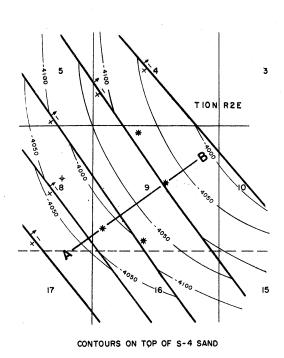
COUNTY: SACRAMENTO

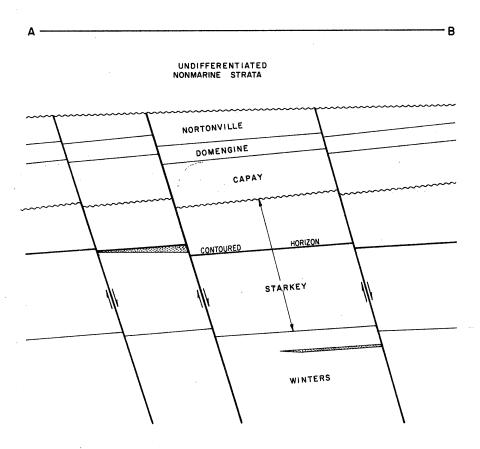
#### **STONE LAKE GAS FIELD**

#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec.	T. &	R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Atlantic Oil Co. "Elliott Ranch" 3	Same as present	1	6N	4E	MD	7,430	Winters	
Deepest well	Cities Service Oil Co. "McKeon Const." 1	Cities Service Oil Co. "Costello" 1	6	6N	5E	MD	8,590		Forbes Late Cretaceous

					 Late Cretaceous
			POOL DATA		
ITEM	WINTERS				FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	November 1974				
Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir	7,700 2,680 3/8 3,246	i	·		
pressure (psi)	128 1,700-2,100 Winters				
Formation	Late Cretaceous 7,072 20	.:			
area (acres)	90				
		RE	SERVOIR ROCK PROPERT	TIES	
Porosity (%)	28-32**				
Swi (%) Sgi (%) Permeability to air (md)	30-35 ** *  65-70 ** *				
		RE	SERVOIR FLUID PROPERT	ries	<u> </u>
Oil: Oil gravity (*API)		,			
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.605 900				
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)		·			
		ENH	ANCED RECOVERY PROJ	ECTS	 
Enhanced recovery projects Date started Date discontinued					
	*				
		i j			
	. •	i •			-
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	183,361 1979				


Base of fresh water (ft.): 800


Remarks: Commercial gas deliveries began in May 1978.

### SUGARFIELD GAS FIELD

SERIES		RMATION AND MEMBER	COMPOSITE ELECTRIC LOG
POST - EOCENE	UND NON STR.	MARINE	2500
		TONVILLE	
EOCENE	CAP		3500
		S-1 SAND	4000
	STARKEY	S-3 SAND	
UPPER CRETACEOUS	.s	S-5 SAND	4500
	WIN	TERS 5	5000

JANUARY 1980

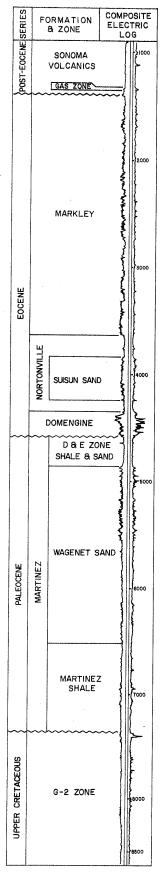


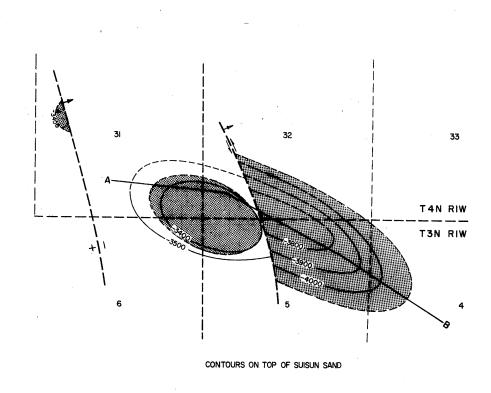


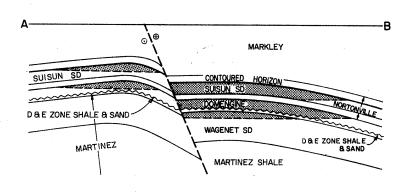
COUNTY: YOLO

### SUGARFIELD GAS FIELD

### **DISCOVERY WELL AND DEEPEST WELL**


		Present operator and well designation	Original operator and well designation	Sec. T. & R.	В,&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
10000	Discovery well	The Dow Chemical Co. "Wauhab" 1	Same as present	9 10N 2E	MD	6,271	Winters	
	Deepest well	The Dow Chemical Co. "Robinson Well" 1	Same as present	16 10N 2E	MD	6,729		Confidential


			POOL DATA		
ITEM	STARKEY	WINTERS			FIELD OR AREA DATA
Discovery date	December 1977	July 1976 4,020			
Gas (Mcf/day)	1,550 3/16 1,780	1,750 20/64 2,240			
Reservoir temperature (°F)	108 880-1,200 Starkey	112 850-1,200 Winters			
Average depth (ft.)	Late Cretaceous 4,080 30	Late Cretaceous 4,930 15			240
area (acres)					240
		KE	SERVOIR ROCK PROPERT	IES	
Porosity (%) Soi (%) Swi (%)	28-34† 40-45†	22-28† 40-45†			
Sgi (%) Permeability to air (md)	55-60†	55-60†			
		RE	SERVOIR FLUID PROPERT	ries	 
Oil: Oil gravity (*API)					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.579 956	.592 930			
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)					
,		ENI	IANCED RECOVERY PRO	JECTS	
Enhanced recovery projects Date started Date discontinued	·				
	•				
	,				
•	·				
Peak oil production (bbl)					
YearPeak gas production, net (Mcf) Year			-		


Base of fresh water (ft.): 2,400

Remarks: Commercial gas deliveries began in February 1980.

### SUISUN BAY GAS FIELD





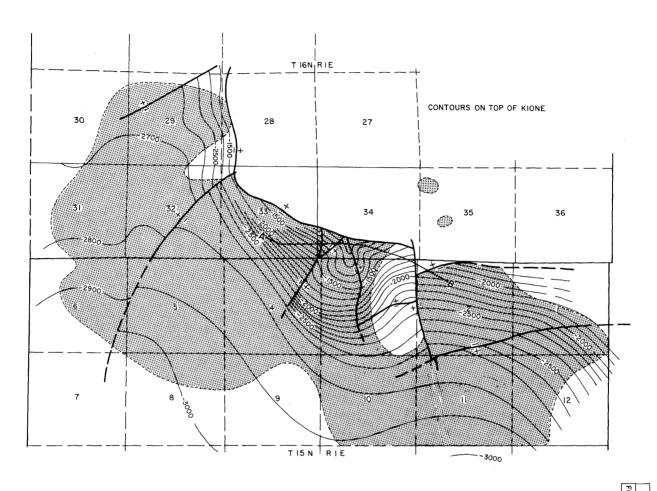


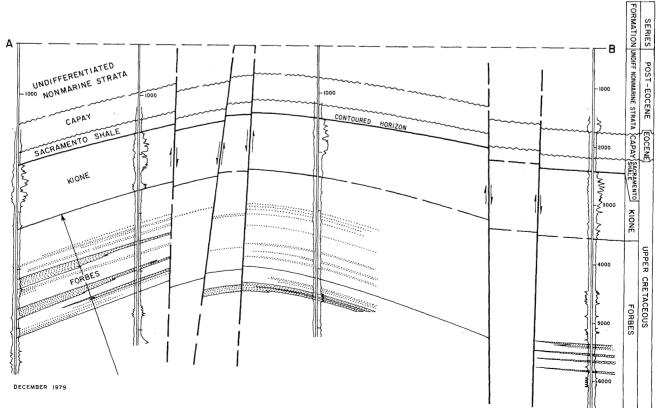
STRUCTURAL INTERPRETATION COURTESY OF CHEVRON U.S. A., INC.

SUISUN BAY GAS FIELD

COUNTY: SOLANO

#### **DISCOVERY WELL AND DEEPEST WELL**


		Present operator and well designation	Original operator and well designation	Sec. 1	r. & I	R.	в.&м.	(icci)	Pool (zone)	Strata & age at total depth
	Discovery well	Community" 3	Standard Oil Co. of Calif. "Suisun Community" 3			LW	MD	5,645	Suisun	G-zone
I	Deepest well	Chevron U.S.A. Inc. "Suisun Community" 16	Standard Oil Co. of Calif. "Suisun Community" 16	4 :	5N 1	1W	MD	8,898		Late Cretaceous


Com	nunity" 16	Community"	16			
	·		POOL DATA	1	· · · · · · · · · · · · · · · · · · ·	FIELD OR
ITEM	UNNAMED	SUISUN	DOMENGINE	WAGENET		AREA DATA
Discovery dateInitial production rates	1	September 1944	January 1946	October 1961		
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)		7,350 1,320 1/2	5,675 1,025 1/2	2,620 760 3/8		
Initial reservoir pressure (psi) Reservoir temperature (°F) .	420 94	1,610 127	1,800 137	2,070 143		
Initial oil content (STB/acf Initial gas content (MSCF/ar Formation	Cft.). Sonoma Volcanics Pliocene 975 25	910 Nortonville Eocene 3,650 175	950-1,300 Domengine Eocene 4,150 65	790-1,000 Martinez Paleocene 4,650 80		720
area (acres)		RI	SERVOIR ROCK PROPER	RTIES		
P		24	24-30	20-24***		
Porosity (%)		22 78 210	20-26 74-80 290-350	30-35*** 65-70***		
		RI	ESERVOIR FLUID PROPER	RTIES		
Oil: Oil gravity (*API) Sulfur content (% by wt. Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia Viscosity (cp) @ *F						
Gas: Specific gravity (air = 1.1 Heating value (Btu/cu. ft	.570 ^{††} .)	.585†† 1,040	.585†† 1,040	.590†† 1,048		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _w (ohm/m) (77°F)		4,300-16,400	6,700-16,900	13,000		
		EN	HANCED RECOVERY PRO	DJECTS		
Enhanced recovery projects Date started Date discontinued						
				<u> </u>		
Peak oil production (bbl) Year Peak gas production, net (! Year						6,166,271 1966

Base of fresh water (ft.): None

Remarks: Commercial gas deliveries began in February 1947. In June 1959, G. E. Kadane & Sons "Suisun Community" 10 (now Mobil Oil Corporation "Standard Suisun" 10), while drilling at 1,024 feet, blew out of control. The substructure, drawworks, and most of the drilling mast were lost in the resulting crater.

### SUTTER BUTTES GAS FIELD



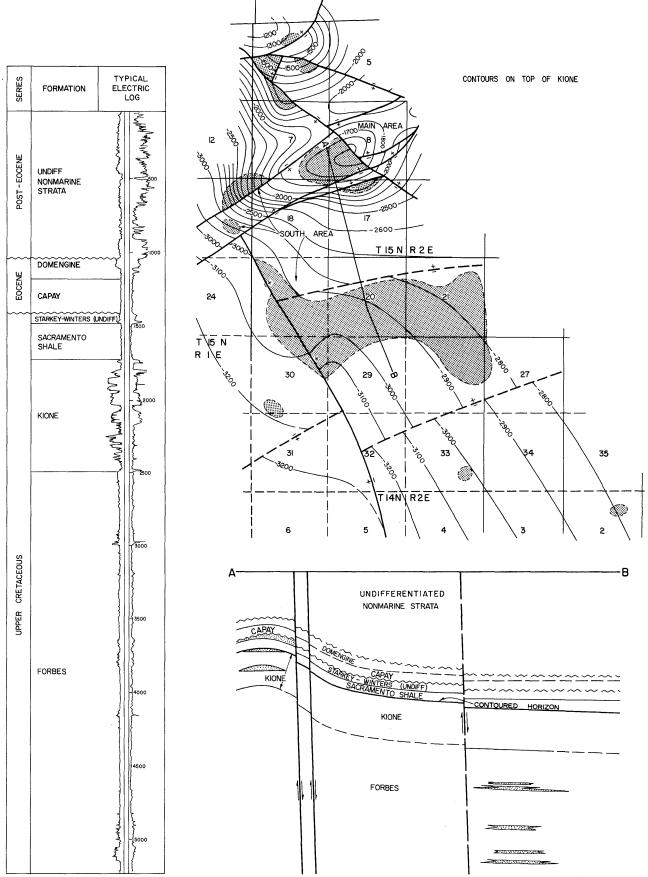


#### **SUTTER BUTTES GAS FIELD**

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Buttes Resources Co. "Buttes" 1	The Buttes Oilfields, Inc. "Buttes" 1	35 16N 1E	MD	2,727	Forbes	
Deepest well	Buttes Resources Co. "Buttes" 14	Buttes Gas & Oil Co. "Buttes" 14	12 15N 1E	MD	7,868		basement pre-Late Cret.

POOL DAT	Α
----------	---


			POOL DATA			on					
ITEM	UNNAMED SAND STRINGERS					FIELD OR AREA DATA					
Discovery dateInitial production rates	February 1933										
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	3,060										
Initial reservoir pressure (psi) Reservoir temperature (°F)	·	u.									
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation Geologic age	Forbes Late Cretaceous	: :									
Average depth (ft.)	2,100-6,000 1-60 9,010		·								
area (acres)	3,020	RE	SERVOIR ROCK PROPERT	NES							
Porosity (%)		:									
Swi (%) Sgi (%) Permeability to air (md)											
	RESERVOIR FLUID PROPERTIES										
Oil: Oil gravity (*API)Sulfur content (% by wt.) Initial solution GOR (SCF/STB)Initial oil FVF (RB/STB)											
Bubble point press. (psia) Viscosity (cp) @ °F						,					
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.560636 835-1,020										
Water: Salinity, NaCl (ppm) T.D.S. (ppm)	3,600-31,300 4,500-23,000 .35-1.6										
		ENH	IANCED RECOVERY PROJ	IECTS							
Enhanced recovery projects Date started Date discontinued											
Peak oil production (bbl)											
YearPeak gas production, net (Mcf) Year	15,201,294 1965										

Base of fresh water (ft.): 2,000

Remarks: Formerly known as Marysville Buttes Gas field. Commercial gas deliveries began in November 1938.

Selected References: Hunter, G. W., 1955, Marysville Buttes Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 41, No. 1.
Railroad Commission of the State of Calif. and Calif. Div. of Oil and Gas, Marysville Buttes Gas Field in Estimate of the Natural Gas
Reserves of the State of Calif. as of Jan. 1, 1946: Case No. 4591, Special Study No. S-525, p. 34-39, 1946.

#### SUTTER CITY GAS FIELD



COUNTY: SUTTER

#### **SUTTER CITY GAS FIELD** Cont.....

#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Buttes Resources Co. "Sutter Community A'	Richfield Oil Corp. "Sutter Community	8 15N 2E	MD	3,104	Kione	
Deepest well	l Atlantic Oil Co. "Sutter Unit K" 1	Unit A" 1 Same as the present	30 15N 2E	MD	7,925 <u>a</u> /		Guinda Late Cretaccous

			POOL DATA			
ITEM	KIONE					FIELD OR AREA DATA
Discovery date	August 1952					
Oil (bbl/day)Gas (Mcf/day)	280					
Flow pressure (psi)	i 900		,			
Bean size (in.)Initial reservoir	1/0		ĺ			
pressure (psi)	800					
Reservoir temperature (°F) Initial oil content (STB/acft.)	99					
Initial gas content (MSCF/acft.)	380-500					
Formation	Kione Late Cretaceous					
Average depth (ft.)	1,700				•	
Average net thickness (ft.)	140			·		3,570
		Ri	SERVOIR ROCK PROPERT	ries		
Porosity (%)	25-30 ***					
So; (%)						
Swi (%)	30-35 *** 67-70 ***					
Permeability to air (md)	67-70					
		T	SERVOIR FLUID PROPERT	T		
Oil:						
Oil gravity (°API) Sulfur content (% by wt.)						•
Initial solution						
GOR (SCF/STB)					1	
Initial oil FVF (RB/STB) Bubble point press. (psia)						
Viscosity (cp) @ *F						
Gas:						
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)						
Water:						
Salinity, NaCl (ppm) T.D.S. (ppm)						•
R _W (ohm/m) (77°F)	İ					
		ENI	HANCED RECOVERY PRO	JECTS		L
Enhanced recovery projects  Date started						
Date discontinued						
Peak oil production (bbl)						
Year						
Peak gas production, net (Mcf) Year						6,185,931 1966
	<u> </u>	<u></u>	<u> </u>	<u> </u>	L	L

Base of fresh water (ft.):

a/ Directional well, true vertical depth is unknown.

COUNTY: SUTTER

#### SUTTER CITY GAS FIELD MAIN AREA

#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	i A'' l	Richfield Oil Corp. "Sutter Community A" 1			.,	Kione	
Deepest well	Buttes Resources Co. "Butte Community B"	Richfield Oil Corp. "Butte Community B" 6	7 15N 2E	MD	5,084		rhyolite <u>a</u> / Plio. or Pleis.

	***************************************				 Plio. or Pleis
,			POOL DATA		
ITEM	UNNAMED	KIONE			FIELD OR AREA DATA
Discovery date	June 1964 <u>b</u> / 655 190 25/64	August 1952 . 280 . 900 1/8			
pressure (psi)  Reservoir temperature (°F)  Initial oil content (STB/acft.)  Initial gas content (MSCF/acft.).  Formation  Geologic age  Average depth (ft.)  Average net thickness (ft.)  Maximum productive  area (acres)	650 95 230-310 Starkey-Winters Late Cretaceous 1,440 30	. 800 99 380-500 Kione Late Cretaceous 1,700 140			490
		R	ESERVOIR ROCK PROPER	TIES	
Porosity (%)	20-25*** 35-40*** 60-65***	25-30*** 30-35*** 65-70***			 -
		Rí	ESERVOIR FLUID PROPER	TIES	
Oil: Oil gravity (*API)					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	-	.593†† 920			
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	<del>.</del>	2,200			
		EN	IANCED RECOVERY PRO	JECTS	
Enhanced recovery projects Date started Date discontinued					
		,			
Peak oil production (bbl) YearPeak gas production, net (Mcf)					2,062,265 1958

Base of fresh water (ft.): 1,200-1,700

Remarks: Commercial gas deliveries began in June 1953.

a/ Intruded into the Forbes Formation (Late Cretaceous).
5/ Date of recompletion, originally completed in the Kione formation.

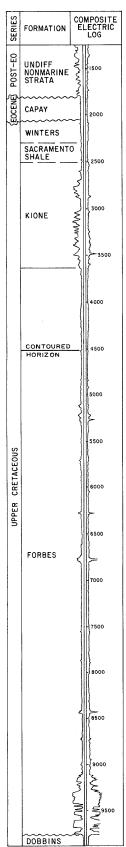
COUNTY: SUTTER

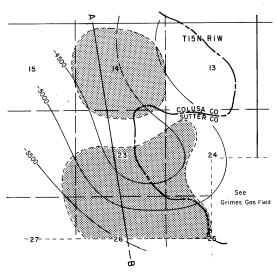
#### **SUTTER CITY GAS FIELD** SOUTH AREA

#### **DISCOVERY WELL AND DEEPEST WELL**

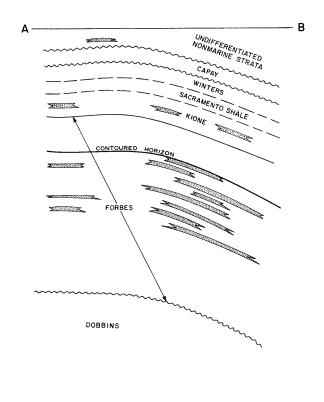
	Present operator and well designation	Original operator and well designation	Sec. T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Atlantic Oil Co. "Epperson" 1	Same as present	19 15N	2E	MD	7,150	unnamed sand	
Deepest well	Atlantic Oil Co. "Sutter Unit K" 1	Same as present	30 15N	2E	MD	7,925 <u>a</u>	stringers	Guinda Late Cretaceous

POOL DATA
-----------


· ·			POOL DATA						
ITEM	UNNAMED SAND STRINGERS	G-ZONE				FIELD OR AREA DATA			
Discovery dateInitial production rates	August 1961	September 1961							
Oil (bbl/day)	2,000-8,000 <u>b/</u> 1,600-2,000 15/64-27/64	6,000 <u>c</u> / 1,800 25/64							
Initial reservoir pressure (psi)	2,040-3,500 111-139	3,210 124-128							
Initial gas content (MSCF/acft.). Formation Geologic age	830-1,300 Forbes Late Cretaceous 3,950-6,830	660-1,100 Dobbins Late Cretaceous 6,160-6,620							
Average uet thickness (ft.)	3-50	5-20		·		3,080			
		R	ESERVOIR ROCK PROPERT	ries					
Porosity (%) Soj (%)	18-30†	15-20***							
Sw; (%)	35-50† 50-65†	45-55*** 45-55***							
	RESERVOIR FLUID PROPERTIES								
Oil: Oil gravity (*API)									
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.563691 684-1,019	-							
Water: Salinity, NaCl (ppm)	2,200-22,000	_				,			
, , , , , , , , , , , , , , , , , , , ,		EN	HANCED RECOVERY PRO	JECTS	1				
Enhanced recovery projects Date started Date discontinued									
Peak oil production (bbl) YearPeak gas production, net (Mcf) Year						5,787,788 1966			


Base of fresh water (ft.): Above 1,000

Remarks: Commercial gas deliveries began in June 1962.


- a/ Directional well, true vertical depth is unknown.
  b/ Completed from two intervals in the Forbes Formation.
  c/ Commingled Forbes Formation and G-Zone production.

### SYCAMORE GAS FIELD





CONTOURS ON TOP OF FIRST FORBES PRODUCING SAND & EQUIVALENT



DECEMBER 1979

COUNTY: COLUSA and SUTTER

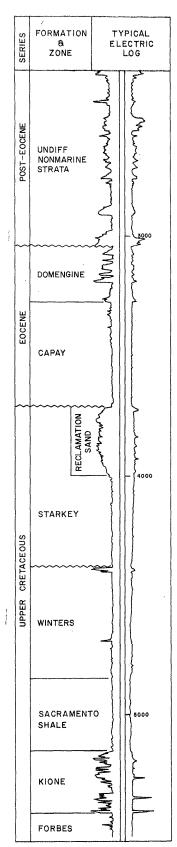
#### **SYCAMORE GAS FIELD**

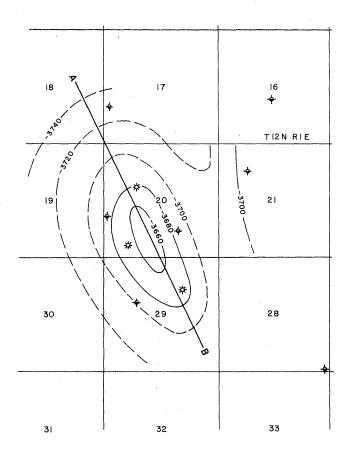
#### **DISCOVERY WELL AND DEEPEST WELL**

,	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Buttes Resources Co. "O. P. Davis" B-1	Humble Oil & Rfg. Co. "O. P. Davis" B-1	14 15N 1W	MD	3,600	undiff. non-	
Deepest well	Buttes Resources Co. "O. P. Davis" B-6	Humble Oil & Rfg. Co. "O. P. Davis" B-6	22 15N 1W	MD	10,104	marine strata	Dobbins Late Cretaceous

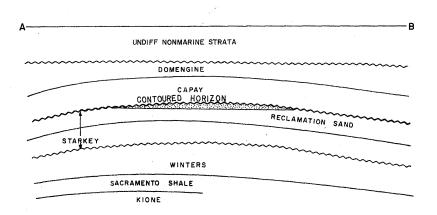
#### **POOL DATA**

		POOL DATA								
UNDIFFERENTIATED NONMARINE STRATA	KIONE	FORBES	·		FIELD OR AREA DATA					
September 1956 a/	February 1970	April 1962		· ·						
1,810 560 1/4	3,800 600 1/2	3,680 1,975 19/64								
642 90	1,195 96	2,860-5,720 103-135								
300-390 undiff. nonmarine Post-Eocene 1.480	670-850 Kione Late Cretaceous 2.750	1,800-2,100 Forbes Late Cretaceous 4,734-7,370								
25	40	4-40			1910					
	R	ESERVOIR ROCK PROPE	RTIES							
25-30***	28-33***	25-30								
35-40*** 60-65***	30-35*** 65-70***	35-40 60-65		·						
RESERVOIR FLUID PROPERTIES										
.645 810	.605 906	.565 980-1,010								
		LANGED DECOMENY DD		<u> </u>						
	EN	HANCED RECOVERY PRO	OJECIS							
					·					
					3,235,564 1979					
	NONMARINE STRATA  September 1956 4/  1,810 560 1/4 642 90 300-390 undiff. nonmarine Post-Eocene 1,480 25  25-30*** 35-40*** 60-65***	NONMARINE STRATA   KIONE	UNDIFFERENTIATED NONMARINE STRATA    September 1956 a	UNDIFFERENTIATED NONMARINE STRATA  September 1956 2/ February 1970 April 1962  1,810	September 1956 2   February 1970   April 1962					


Base of fresh water (ft.): 750


Remarks: Commercial gas deliveries began in January 1963.
Several wells were completed with multiple strings of 2 7/8" tubing.

a/ This was the discovery well for Meridian Gas field, which was merged with Sycamore Gas field on January 1, 1966.


## SYCAMORE SLOUGH GAS FIELD

(Abandoned)





CONTOURS ON TOP OF RECLAMATION SAND

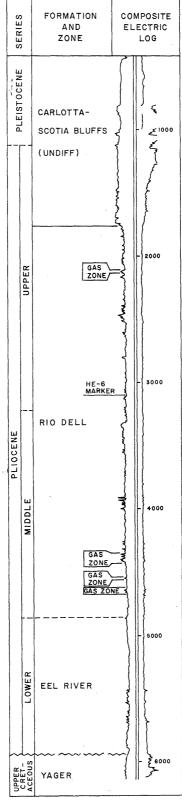


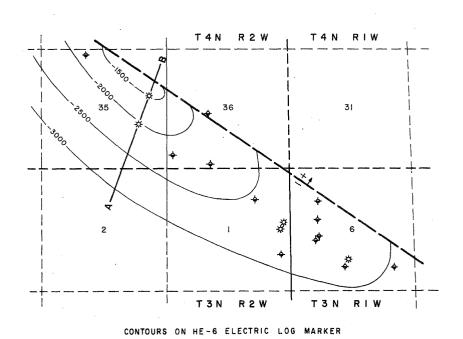
DECEMBER 1979

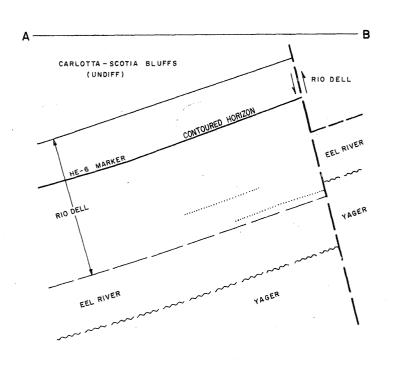
COUNTY: YOLO

## SYCAMORE SLOUGH GAS FIELD (ABD)

#### **DISCOVERY WELL AND DEEPEST WELL**


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Aminoil USA, Inc. "Signal-Monterey- Reclamation" 1	Signal Oil and Gas Co. "Signal-Monterey- Reclamation" l	20 12N 1E		-,	Reclamation	Kione
Deepest well	Natural Gas Corp. of California "Big Valley Recl. Dist." 108-2	Same as present	20 12N 1E	MD	MD 5,525		Late Cretaceous


Discovery date	Deepest well	Valley Red	cl. Dist." 108-2	prg .				Late Cretaceous
Discovery date				/	POOL DATA			
Initial production rates	ITEM		RECLAMATION					FIELD OR AREA DATA
113	Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi Bean size (in.) Initial reservoir	i)	4,200 1,100 1/2					
Sol (%)	Reservoir temperature Initial oil content (STB Initial gas content (MS Formation	e (°F)	950 Starkey Late Cretaceous 3,720 25					
Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   Coling   C				RE	SERVOIR ROCK PROPERT	TES		
Oil: Oil gravity ('API)	Soj (%) Swj (%) Sgj (%)		40†				e Sec	
Oil gravity ("AP!)				RE	SERVOIR FLUID PROPERT	TIES		
Specific gravity (air = 1.0)	Oil gravity (°API) Sulfur content (% le initial solution GOR (SCF/STB) Initial oil FVF (RB/Bubble point press.	by wt.)/STB)	·					
Salinity, NaCl (ppm)	Specific gravity (air	r = 1.0) /cu. ft.)						
Enhanced recovery projects  Date started  Date discontinued  Peak oil production (bbl)	Salinity, NaCi (pp T.D.S. (ppm)		3,900					
Date discontinued  Date discontinued				ENF	ANCED RECOVERY PRO	ECTS	·	
	Date started							
Year Peak gas production, net (Mcf) 181,114 1957	Year Peak gas production,	net (Mcf)						


Base of fresh water (ft.): 2,100

Remarks: Commercial gas deliveries began in August 1956. The field was abandoned in March 1966. Three wells were completed and cumulative gas production was 714,277 Mcf.

# TABLE BLUFF GAS FIELD (Abandoned)





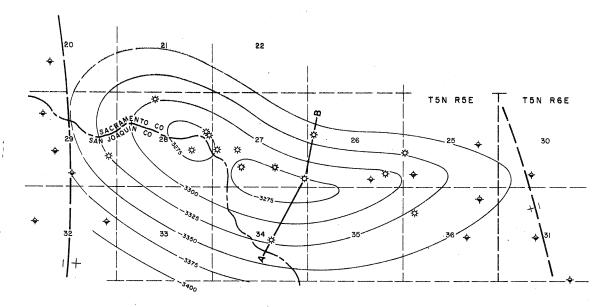


DECEMBER 1979

COUNTY: HUMBOLDT

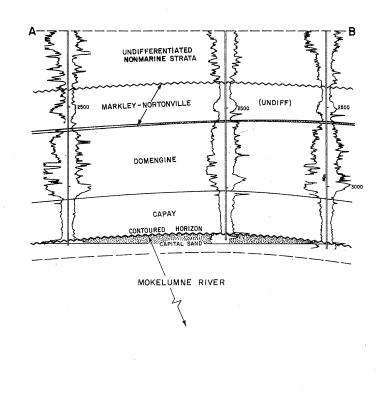
# TABLE BLUFF GAS FIELD (ABD)

#### **DISCOVERY WELL AND DEEPEST WELL**


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	(icei)	Pool (zone)	Strata & age at total depth
Discovery well	Zephyr Oil Co. "Leon Oro Blanco" T-2	Same as present	6 3N 1W	H	4,925	unnamed sand stringers	
Deepest well	Texaco Inc. "Eureka" 1	The Texas Co. "Eureka" 1	1 3N 2W	Н	6,133		Yager Early Cretaceous
ITEM UNNAMED SAND STRINGERS							FIELD OR Area data

			POOL DATA		
ITEM	UNNAMED SAND STRINGERS		·		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	July 1960				
Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	1,500 650 13/32				
pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	550-1,500 88-109				
Initial gas content (MSCF/acft.). Formation	230-500 Rio Dell Pliocene 2,100-4,775				
Average net thickness (ft.) Maximum productive area (acres)	1-40 320				
		RE	SERVOIR ROCK PROPERT	IES	
Porosity (%)	22-27*** 48-53*** 47-52***				
Permeability to air (md)					 
		T RE	SERVOIR FLUID PROPERT	IES	
Oil: Oil gravity (*API)					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.566†† 1,035				
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)					
		EN	ANCED RECOVERY PROJ	ECTS	
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl) Year	43,219				
Peak gas production, net (Mcf) Year	1962				

Base of fresh water (ft.): 700-1,000


Remarks: Commercial gas deliveries began in August 1962. The field was abandoned in December 1968. Five wells were completed and cumulative gas production was 108,924 Mcf.

### THORNTON GAS FIELD



SERIES	FORMATION & ZONE	TYPICAL ELECTRIC LOG
POST - EOCENE	UNDIFF NONMARINE STRATA	2000 2000 WMW. 2000
NE	MARKLEY- NORTONVILLE (UNDIFF.)	كالعالم رادر درد
EOCENE	DOMENGINE	3000
	CAPAY	
	MOKELUMNE RIVER	4000
UPPER CRETACEOUS	STARKEY	5000 5000
	UNDIFF MARINE STRATA	7000

CONTOURS ON TOP OF CAPITAL SAND



DECEMBER 1979

#### **THORNTON GAS FIELD**

#### **DISCOVERY WELL AND DEEPEST WELL**

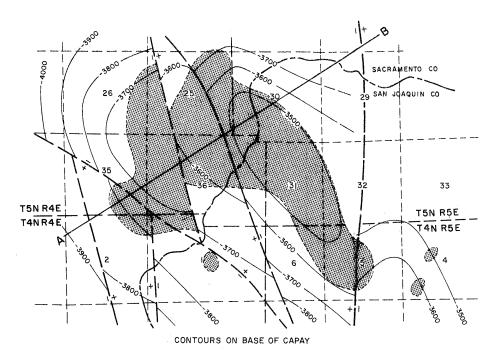
	Present operator and well designation	Original operator and well designation	Sec.	T. & 1	R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess Corp., Opr. "Capital Co." 1	Amerada Petroleum Co. "Capital Co." 1	36	5N 5	5E	MD	8,387	Capital	
Deepest well	Chevron U.S.A. Inc. "Dinelli-Blossom- McGillivray" 1	Standard Oil Company of California "Dinelli-Blossom-McGillivray" l	29	5N 5	5E	MD	11,000		Forbes Late Cretaceous

#### POOL DATA

POOL DATA							
ITEM	UNNAMED a/	UNNAMED a/	CAPITAL			FIELD OR AREA DATA	
Discovery dateInitial production rates	May 1961 <u>b</u> /	May 1970 <u>b</u> /	July 1943				
Oil (bbl/day)	900 1,000 5/16	810 640 1/4	6,900 805 3/8				
Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	750 104	1,130 108	1,500 118				
Geologic ageAverage depth (ft.)	Eocene 2,315	420-590 Markley-Nortonville Eocene 2,580	780-970 Mokelumne River Late Cretaceous 3,300				
Average net thickness (ft.) Maximum productive area (acres)	15	25	30			3,160	
N4-94		RE	SERVOIR ROCK PROPER	TIES			
Porosity (%)	27-31	27-31	31-35				
Soj (%)	45-55 45-55	45-55 45-55	40-45 55-60				
		RE	SERVOIR FLUID PROPER	TIES			
Oil: Oil gravity (*API)							
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.571†† 985	.571†† 985	.575†† 960				
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)			14,379				
		EN+	IANCED RECOVERY PRO	JECTS	1		
Enhanced recovery projects Date started Date discontinued							
		,					
Peak oil production (bbl) YearPeak gas production, net (Mcf) Year		·				4,063,765 1957	

Base of fresh water (ft.): 600

Remarks: Commercial gas deliveries began in December 1946. Abandoned September 1975. Reactivated June 1976. Abandoned October 1979. Reactivated June 1980.


Cumulative gas production 53,641,219 Mcf. No condensate production. There were 14 completed wells.

a/ Locally referred to as Deadhorse sand stringers.

D/ Date of recompletion; originally completed in the Capital zone.

Selected References: Loken, K. P., 1957, Thornton Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 43, No. 1.

### WEST THORNTON-WALNUT GROVE GAS FIELD



SERIES WELL IN RIVER ISLAND POST - EOCENE UNDIFF NONMARINE STRATA NORTONVILLE DOMENGINE CAPAY CONTOURE MOKELUMNE RIVER HAT SHALE UPPER CRETACEOUS STARKEY WINTERS

DECEMBER 1979

## THORNTON, WEST-WALNUT GROVE GAS FIELD

#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec.	T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "McCormack-Williamson"	E. L. Doheny, Oper. "McCormack-Williamson"	30 5	5N 5E	MD	8,808	Midland	
Deepest well	Chevron U.S.A. Inc. "McCormack-William- son" 9	Standard Oil Co. of Calif. "McCormack- Williamson" 9	25 5	5N 5E	MD	12,628		basement pre-Lt. Cret.

P	O	O	L	D.	A	T	Α

		•	POOL DATA			
ITEM	BURCHELL	DEADHORSE	NORTONVILLE STRINGERS	DOMENGINE	CAPAY STRINGERS	FIELD OR Area data
Discovery dateInitial production rates Oil (bbl/day)	August 1961	August 1959	May 1960	June 1964	March 1961	
Gas (Mcf/day)	700 825 12/64	6,140 1,025 1/2	1,550 1,025 1/4	2,170 605 3/8	1,100 1,230 3/16	
pressure (psi) Reservoir temperature (°F) Initial oil content (STR/acft.)	106	1,285 110	1,400 120	1,390 120	1,420 124	
Initial gas content (MSCF/acft.). Formation	undiff. nonmarine post-Eccene 2,410 6	500-670 Markley Eocene 2,810 30	680-840 Nortonville Eocene 2,980 3-6	660-880 Domengine Eocene 2,880 2-5	Capay Eocene 3,280 3	3,130
	<u> </u>		ESERVOIR ROCK PROPER	I TIES	<u> </u>	
Porosity (%)	_	28-31	26-30** *	26-30		
Soj (%)		45-55 45-55	35-40*** 60-65***	30-40 60-70		
		R	ESERVOIR FLUID PROPER	TIES		
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	<u>-</u> -	.563 ^{††} 1,000	.563 ^{††} 1,000	.575 ^{††} 970	.563 ^{††} 1,000	
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)						
		EN	HANCED RECOVERY PRO	JECTS		
Enhanced recovery projects Date started Date discontinued						
		,				-
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						15,486,111 1964

Base of fresh water (ft.): 800-1,300

Remarks: Commercial gas deliveries began in June 1958. Some of the gas-sand stringers in the Winters formation have been given local names by the operators.

Selected References: Silcox, J. H., 1962, West Thornton and Walnut Grove Gas Fields, Calif. in Geologic Guide to the Gas and Oil Fields of Northern Calif.: Calif. Div. of Mines and Geology Bull. 181, p. 140-148.

## THORNTON, WEST-WALNUT GROVE GAS FIELD .....Cont

### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well							
Deepest well				-			

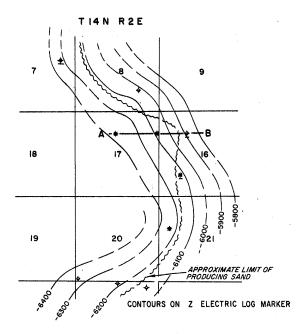
			POOL DATA		
ITEM	MEGANOS CANYON	MIDLAND	GROVE	FONG	FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	May 1959	July 1956	May 1966	October 1967	
Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	2,125 1,600 1/4	1,750 1,135 1/4	2,350 1,410 16/64	3,065 1,450 12/64	
Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	1,540 125	1,605 125	1,790 130	1,815	
Initial gas content (MSCF/ac-ft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	Meganos Canyon fill Paleocene 3,680 15	820-990 Mokelumme River Late Cretaceous 3,560 60	740-900 Mokelumne River Late Cretaceous 4,060 10	750-920 Mokelumne River Late Cretaceous 4,240 35	
		RI	SERVOIR ROCK PROPER	TIES	
Porosity (%)		26-29 30-35	25-28 † 40-45 †	25-28 [†] 40-45 [†]	
Swi (%) Sgj (%) Permeability to air (md)		65-70	55-60	55-60	
		RI	SERVOIR FLUID PROPER	TIES	 
Oil: Oil gravity (*API)					·
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)		.580 ^{††} 968	.575 ^{††} 970	.582 ^{††} 955	
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	,				
		ENH	IANCED RECOVERY PRO	JECTS	
Enhanced recovery projects Date started Date discontinued		·			
		,			
				,	
Peak oil production (bbl) Year		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			
Peak gas production, net (Mcf) Year					

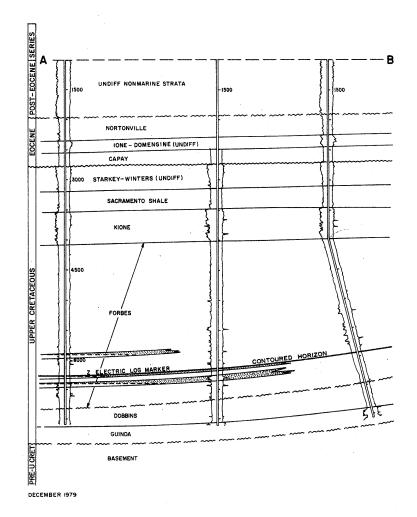
Base of fresh water (ft.):

Remarks:

## THORNTON, WEST-WALNUT GROVE GAS FIELD .....Cont

#### **DISCOVERY WELL AND DEEPEST WELL**


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well							
Deepest well							
		POOL DATA					,


_			POOL DATA		······································	FIFT D. OP
ITEM	MEALER	UNNAMED				FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (*F) Initial oil content (STB/acft.)	July 1958  2,400 1,580 1/4 2,010 119	July 1959  2,100 2,465 12/64  3,550-3,900 152-154				
Initial gas content (MSCF/acft.). Formation	650-1,000 Mokelumme River Late Cretaceous 4,420 25	1,400-1,700 Winters Late Cretaceous 7,460-8,300 10-30				
		R	ESERVOIR ROCK PROPERT	TIES		
Porosity (%)	21-27 [†] 40-50 [†] 50-60 [†]	24-28 . 35-45 . 55-65				
		R	ESERVOIR FLUID PROPERT	ries		
Oil: Oil gravity (*API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water:	.585566 ^{††} 940-980	.600 ^{††} 920				
Salinity, NaCl (ppm)						
W (,, (** * )		<u> </u>	HANCED RECOVERY PRO	J JECTS	L	
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl) YearPeak gas production, net (Mcf) Year						

Base of fresh water (ft.):

Remarks:

# TISDALE GAS FIELD

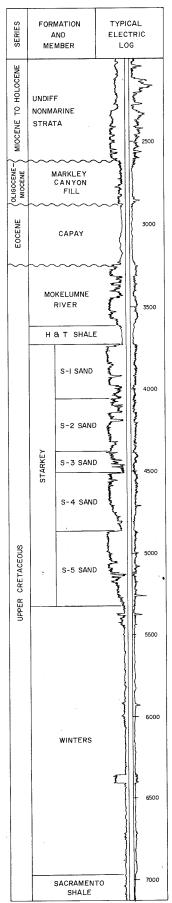


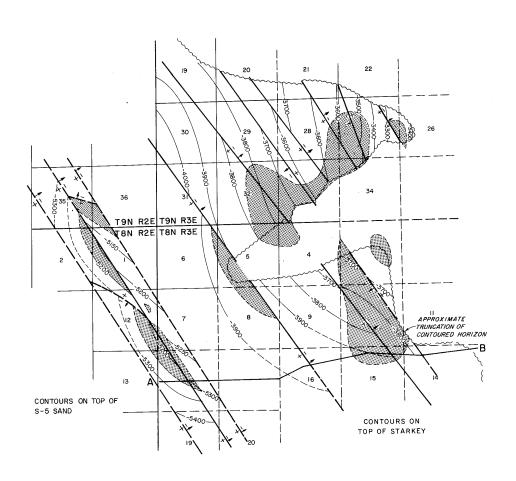


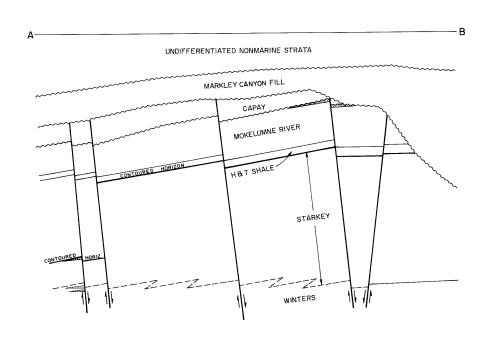
# DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	T. A. Atkinson "Atlantic-Giusti" 1	Same as present	17 14N 2E	MD	7,115	Forbes	
Deepest well	Atlantic Oil Co. "Lamb" 2	Same as present	17 14N 2E	MD	7,542		Guinda Late Cretaceous
1		I					

POOL DATA											
ITEM	FORBES					FIELD OR AREA DATA					
Discovery date	August 1961  150-8,580 a/a/a/2,540-2,480 a/21/64 a/3,550 122 1,700-1,900 Forbes Late Cretaceous 6,200 2-20 640										
		RE	SERVOIR ROCK PROPERT	TIES							
Porosity (%)	24-32 48-55 45-52										
		RE	SERVOIR FLUID PROPERT	ries		I					
Oil: Oil gravity ("API)	- 925-1,000										
Water: Salinity, NaCl (ppm) T.D.S. (ppm)	16,400-18,100										
		ENI	IANCED RECOVERY PRO	JECTS	T	Т					
Enhanced recovery projects Date started Date discontinued											
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	1,006,041 1968										


Base of fresh water (ft.): 600


Remarks: Commercial gas deliveries began in April 1963.


a/ Well dually completed from two intervals within the Forbes formation.

Selected References: Weddle, J. R., 1969, Tisdale Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 54, No. 2.

## TODHUNTERS LAKE GAS FIELD







JANUARY 1980

COUNTY: YOLO

# **TODHUNTERS LAKE GAS FIELD**

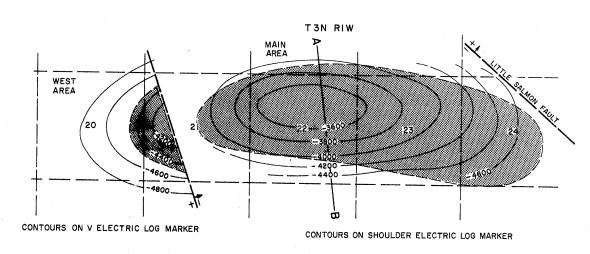
#### **DISCOVERY WELL AND DEEPEST WELL**

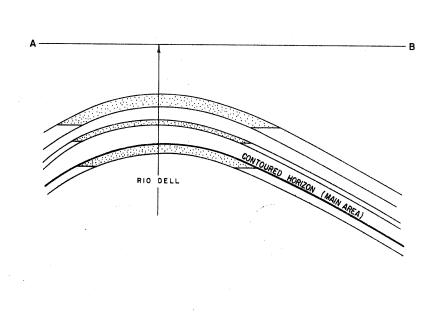
	Present operator and well designation	Original operator and well designation	Sec	. T. 8	k R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Getty Oil Co. "Reavis and Baker" l	Tidewater Oil Co. "Reavis and Baker" 1	33	9N	3E	MD	5,000	Starkey	
Deepest well	Natural Gas Corp "Nishikama-El Macero" 1	Same as present	18	8N	3E	MD	10,400		Forbes Late Cretaceous

#### **POOL DATA**

			POOL DATA			
ITEM	MOKELUMNE RIVER	STARKEY	WINTERS			FIELD OR AREA DATA
Discovery date Initial production rates	October 1968	May 1967	July 1972	·		
Oil (bbl/day)	4,100 840 30/64	5,360 1,110 1/2	4,420 1,850 5/16		·	
Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	1,420 118 a/	1,580-2,332 122-126 <b>a</b> /	2,180-2,276 147 <u>a</u> /			
Initial gas content (MSCF/acft.). Formation	560-1,000 Mokelumme River Late Cretaceous 3,150 30-60	750-1,800 Starkey Late Cretaceous 4,000-5,850 5-55	750-1,200 Winters Late Cretaceous 5,440-6,440 20-40			
area (acres)						3,015
			ESERVOIR ROCK PROPER	TIES		
Porosity (%)	22-35† 30-40† 60-70†	27-35 [†] 25-40 60-75	22-28*** 35-45*** 60-75***			
		<u> </u>	ESERVOIR FLUID PROPER	TIES .		
Oil: Oil gravity ('API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.606 890	.606 900	.603680 695-909			,
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	-	6,160	-			
KW (ORIM/M) (// F)		EN	HANCED RECOVERY PRO	DIECTS		
Enhanced recovery projects Date started Date discontinued						
·						
		,				
Peak oil production (bbl) YearPeak gas production, net (Mcf) Year						11,912,060 1975

Base of fresh water (ft.): 2,100-2,500


Remarks: Commercial gas deliveries began in May 1968. The 695 Btu heating value in the Winters zone is due to high nitrogen content.


 $\underline{a}/$  All temperatures are derived from adjacent fields.

Selected References: Williams, P. A., 1970, Todhunters Lake Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 56, No. 1.

# TOMPKINS HILL GAS FIELD

SERIES	FORMATION AND ZONE	TYPICAL ELECTRIC
	SCOTIA BLUFFS	LOG
UPPER PLIOCENE		2000
		- 2000
MIDDLE PLIOCENE	RIO DELL	CONTOURED HORIZON (MAIN AREA)
		CONTOURED HORIZON (WEST AREA)
LOWER PLIOCENE	EEL RIVER	7000
UPPER CRETACEOUS	YAGER	·}





COUNTY: HUMBOLDT

## TOMPKINS HILL GAS FIELD Cont.....

#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Texaco Inc. "Tompkins Hill Unit Plan" 2	The Texas Co. "Eureka" 2	22 3N 1W	н	7,708	Rio Dell	Rio Dell
Deepest well	Argo Petroleum Corp. "Edwards-Vicenus" 3	Same as the present	20 3N 1W	н	8,127 <u>a</u> /		Pliocene

POOL DATA	PO	OL	DA	IA
-----------	----	----	----	----

·			POOL DATA			
ITEM	RIO DELL					FIELD OK AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi)	1,400 1,100 13/64 890-2,450 116-134					
Reservoir temperature (°F) Initial oil content (STB/ac-ft.) Initial gas content (MSCF/ac-ft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	400-1,000 Rio Dell Pliocene 2,100-5,800 1-50					1,400
		RE	SERVOIR ROCK PROPERT	TES		
Porosity (%)	26 40 60					
·		RE	SERVOIR FLUID PROPERT	TIES		
Oil: Oil gravity (°API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ °F						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	1,035					
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	10,785-22,598					
		FNI	ANCED RECOVERY PROJ	IECTS	L	
Enhanced recovery projects Date started Date discontinued						
		,				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						3,668,947 1972

#### Base of fresh water (ft.):

Remarks: Formerly known as Eureka Gas field. Commercial gas deliveries began in November 1938.

_a/ Directional well, true vertical depth is 7,712 feet.

Selected References: Eureka Gas Field in Estimate of the Natural Gas Reserves of the State of Calif. as of January 1, 1941: Railroad Commission of the State of Calif. and Dept. of Natural Resources, Div. of Oil and Gas, Case No. 4591, Special Study No. S-258, p. 233-235 (1942). Ogle, B. A., 1953, Geology of Eel River Area, Humboldt County, Calif.: Calif. Div. of Mines and Geology Bull. 164, p. 79.

COUNTY: HUMBOLDT

# TOMPKINS HILL GAS FIELD MAIN AREA

# DISCOVERY WELL AND DEEPEST WELL

· ·	Present operator and well designation	Original operator and well designation	Sec.	T. 8	k R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Texaco Inc. "Tompkins Hill Unit Plan" 2	The Texas Co. "Eureka" 2	22	3N	1W	Н	7,708	Rio Dell	
Deepest well	Texaco Inc. "Holmes-Eureka" 3	The Texas Co. "Holmes-Eureka" 3	22	3N	1 W	Н	7,852	<u> </u>	Yager Early Cretaceous

			<b>POOL DATA</b>			
ITEM	RIO DELL					FIELD OR AREA DATA
Discovery date	1,400 1,100 13/64 890-2,450 116-131 400-1,100 Rio Dell Pliocene 2,100-5,800 1-50					
		Kt	SERVOIR ROCK PROPERT	TIES		
Porosity (%)	26 40 60				;	
		RE	SERVOIR FLUID PROPERT	TIES		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (\$CF/\$TB) Initial oil FVF (RB/\$TB) Bubble point press. (psia) Viscosity (cp) @ *F						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	1,035					
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	10,785-22,598					
		ENH	IANCED RECOVERY PROJ	ECTS		
Enhanced recovery projects Date started Date discontinued	,					
	•	,				
Peak oil production (bbl) Year	3,668,947 1972					

Base of fresh water (ft.): 1,400-1,900

Remarks:

## COUNTY: HUMBOLDT

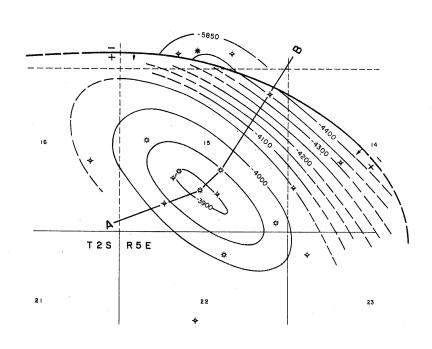
# TOMPKINS HILL GAS FIELD WEST AREA

## **DISCOVERY WELL AND DEEPEST WELL**

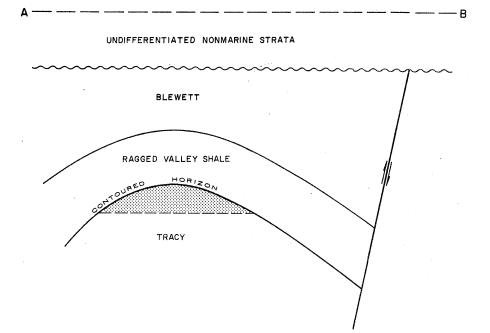
		Present operator and well designation	Original operator and well designation	Sec.	т. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
ľ	Discovery well	Argo Petroleum Corp. "Edwards-Vicenus" 1	King Resources Co. "Edwards Vicenus" 1	20	3N	1W	Н	6,046 <u>a</u> /	Rio Dell	
	Deepest well	Argo Petroleum Corp. "Edwards-Vicenus" 3	Same as present	20	3N	1W	Н	8,127 <u>b</u> /		Rio Dell Pliocene

			POOL DATA			
ITEM	RIO DELL					FIELD OR AREA DATA
Discovery date	December 1977	,				
Flow pressure (psi)	2,512 3/16 3,575 122					
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.)	1,500 Rio Dell Pliocene 5,920	·				
Average net thickness (ft.)	20 40					
		RE	SERVOIR ROCK PROPERT	ries		
Porosity (%)	27 48 52 12			ť		
,		RE	SERVOIR FLUID PROPER	TIES	Lance to the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	
Oil: Oil gravity (°API)						
Viscosity (cp) @ °F	1,029					
Water: Salinity, NaCl (ppm) T.D.S. (ppm)		·				
		ENI	IANCED RECOVERY PRO	JECTS		г
Enhanced recovery projects Date started Date discontinued						·
		,				
Peak oil production (bbl) YearPeak gas production, net (Mcf) Year	15,370 1979					

Base of fresh water (ft.): 1,900-2,100


Remarks: Commercial production began in February 1979.

a/ Directional well, true vertical depth is 5,994 feet.


b/ Directional well, true vertical depth is 7,712 feet.

# TRACY GAS FIELD

SERIE	FORMATION & MEMBER	TYPICAL ELECTRIC LOG
MIO-PLIOCENE SERIES	UNDIFF NON MARINE STRATA	3000
UPPER CRETACEOUS PANOCHE	BLEWETT RAGGED VALLEY SHALE  TRACY  SAWTOOTH WINTERS E ZONE SHAL  LATHROP  SACRAMENTO SHALE	6000 6000 700 700 700 700 700 700



CONTOURS ON TOP OF TRACY



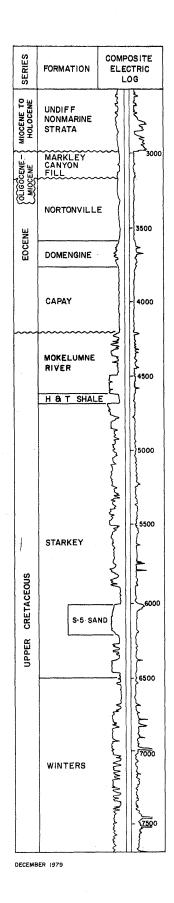
COUNTY: SAN JOAQUIN

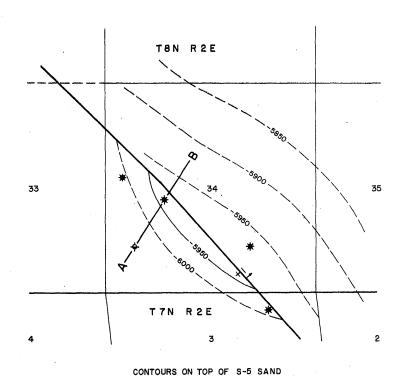
#### **DISCOVERY WELL AND DEEPEST WELL**

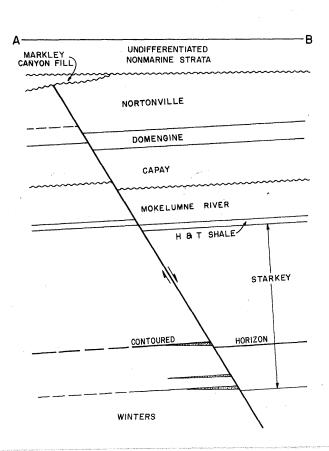
		Present operator and well designation	Original operator and well designation	Sec.	T. & R	. B.&	_ de	Fotal lepth feet)	Pool (zone)	Strata & age at total depth
ŀ	Discovery well	Amerada Hess Corp."F.D.L." 2	Amerada Petroleum Corp. "F.D.L." 2	15	2S 5	E MI	3,	,994	Tracy	
l	Deepest well	Amerada Hess Corp. "Tracy Community 1" 1	Amerada Petroleum Corp. "Tracy Community 1" 1	15	2S 5	Е МІ	13,	,832		Panoche Late Cretaceous

#### POOL DATA

			POOL DATA							
ITEM	TRACY	BLEWETT a/				FIELD OR AREA DATA				
Discovery date	August 1935	November 1977								
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	35,000 1,400 1 1/2	698 500 1/4								
Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	1,854 134	1,850 138								
Initial gas content (MSCF/acft.). Formation	1,050 Panoche Late Cretaceous 3,900 40	580 Panoche Late Cretaceous 5,200 10				390				
area (acres)			RESERVOIR ROCK PROPERT	TIES		330				
Porosity (%)	28	20								
Soj (%)	30 70	45 · 55	·							
			RESERVOIR FLUID PROPERT	TIES						
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F										
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.593 930	.649 808								
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _w (ohm/m) (77°F)	6,350- 8,560	19,200								
		EN	HANCED RECOVERY PROJ	JECTS						
Enhanced recovery projects  Date started  Date discontinued				·						
		,								
Peak oil production (bbl)	,									


Base of fresh water (ft.): 1,200


Remarks: First commercial gas field in Northern California and first field in California to produce gas commercially from a Cretaceous zone. Commercial gas deliveries began in September 1935. The field was abandoned November 1964 and reactivated in November 1977.


a/ Production began in February 1980.

Selected References: Hunter, G. W., 1957, Tracy Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 43, No. 1.

## TREMONT GAS FIELD





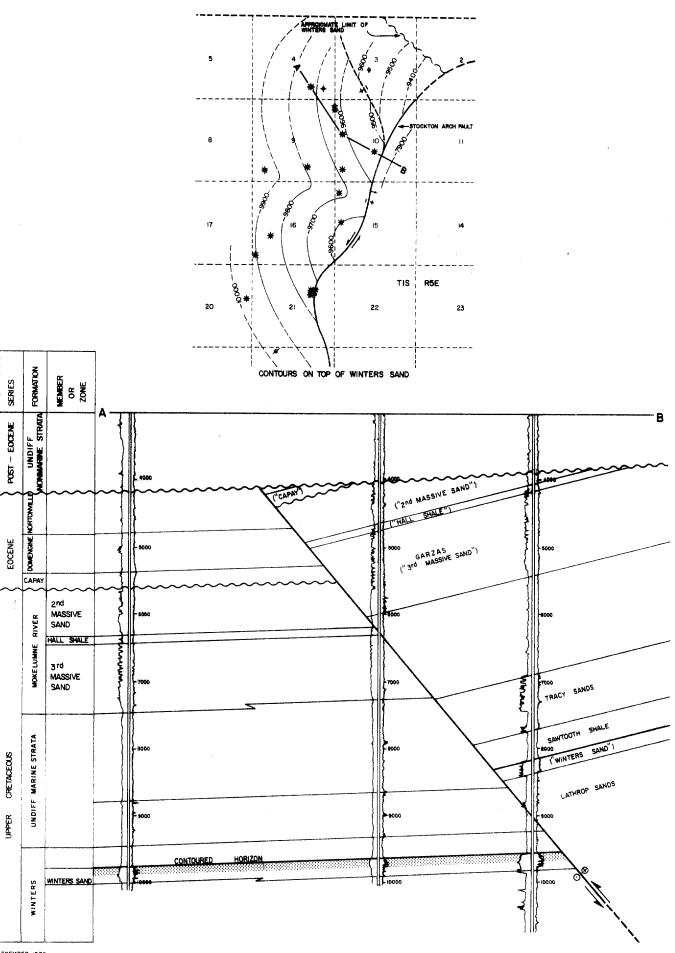


COUNTY: SOLANO

# TREMONT GAS FIELD

## DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation	Original operator and well designation	Sec.	T. 8	k R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Disco	overy well	Capitol Oil Corp. "Hamel-Thomas" 1	Same as present	34	8N	2E	MD	8,051	Starkey	Winters Late Cretaceous
Deep	est well	Same as above			"		"	11	11	nate Cretaceous


#### **POOL DATA**

	IELD OR REA DATA
Ditial production rates	
Gas (Mcf/day)     3,267     3,161       Flow pressure (psi)     2,130     2,070       Bean size (in.)     1/4     1/4       Initial reservoir     2,550     2,810       Pressure (psi)     126     140       Initial oil content (STB/acft.)     126     140	
pressure (psi)	
Starkey   Winters	230
RESERVOIR ROCK PROPERTIES	250
Porosity (%)	
Soj (%)       30-35***       40-45***         Swj (%)       65-70***       55-60***         Permeability to air (md)	
RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity (*API)	
Gas:         Specific gravity (air = 1.0)         .630         .630           Heating value (Btu/cu. ft.)         873         852	
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	
ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects	
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	1,437,548 1976

Base of fresh water (ft.): 3,000

Remarks: Commercial gas deliveries began in January 1976.

# UNION ISLAND GAS FIELD

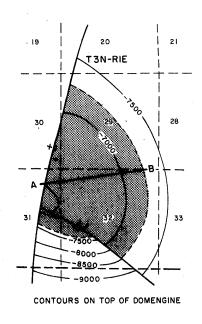


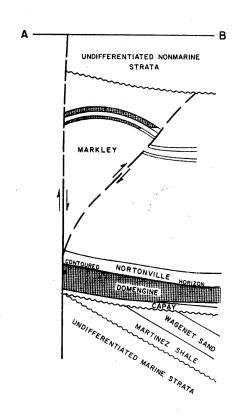
COUNTY: SAN JOAQUIN

## **UNION ISLAND GAS FIELD**

## **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec.	. т. а	& R.	B.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Union Oil Co. of Calif. "Sonol Securities" 1-A	Same as present	10	18	5E	MD	10,000	Winters	
Deepest well	Union Oil Co. of Calif. "Sonol Securities" 7	Same as present	10	18	5E	MD	12,527		E-zone Late Cretaceous


Deepest wen	Securities	s'' 7					Late Cretaceous
				POOL DATA			
ITEM		WINTERS					FIELD OR Area data
Discovery date	)	February 1972 4,450 3,300 1/4					
Initial reservoir pressure (psi) Reservoir temperature Initial oil content (STB Initial gas content (MSI Formation	(°F) /acft.) CF/acft.).	5,040 218 1,100-1,300 Winters Late Cretaceous 9,700 150				·	
1			RE	SERVOIR ROCK PROPERT	TES		
Porosity (%) Soj (%) Swj (%) Sgj (%) Permeability to air (mo		18-20 38-40 60-62 70-200			,		
			RE	SERVOIR FLUID PROPERT	TIES		
Oil: Oil gravity (*API) Sulfur content (% b Initial solution GOR (SCF/STB). Initial oil FVF (RB/S Bubble point press. Viscosity (cp) @ *F.	y wt.) STB) (psia)						
Gas: Specific gravity (air Heating value (Btu/	= 1.0) 'cu. ft.)	.616 870					
Water: Salinity, NaCl (ppn T.D.S. (ppm) R _w (ohm/m) (77°F)		39,900					
			EN	IANCED RECOVERY PROJ	ECTS		
Enhanced recovery pro Date started Date discontinued		-					
	·						
Peak oil production (k Year Peak gas production, I Year	net (Mcf)	22,795,470 1977					


Base of fresh water (ft.): 300

Remarks: Small amounts (4 bbl/day) of 29° API gravity condensate are also produced.

# VAN SICKLE ISLAND GAS FIELD

SERIES	F	ORMATION & MEMBER	ĺ	COMPOSITE ELECTRIC LOG
POST-EOCENE	١	UNDIFF NONMARINE STRATA	,	- 2000
				3000
				4000
EOCENE	٨	MARKLEY		-5000
				6000
	- N	ORTONVILLI	-	
	_		- m	(7000 <b>8</b> 2 2
	С	APAY	3	<b>**</b>
~	~~	D&E ZONE SHALE&SAN	9	8000
		WAGENET SAND	\ \ \ \	مسلمسم
PALEOCENE	MARTINEZ	MARTINEZ SHALE	, v	0000
UPPER CRET	~ U M S	NDIFF ARINE TRATA		}





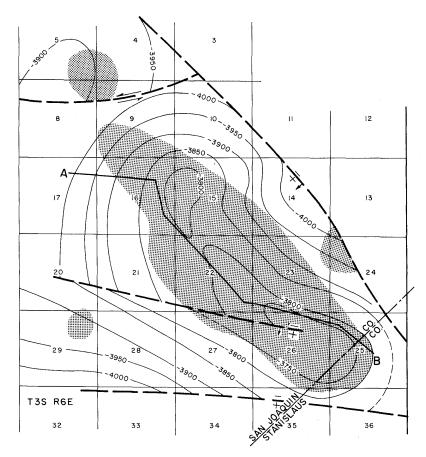
DECEMBER 1979

COUNTY: SOLANO

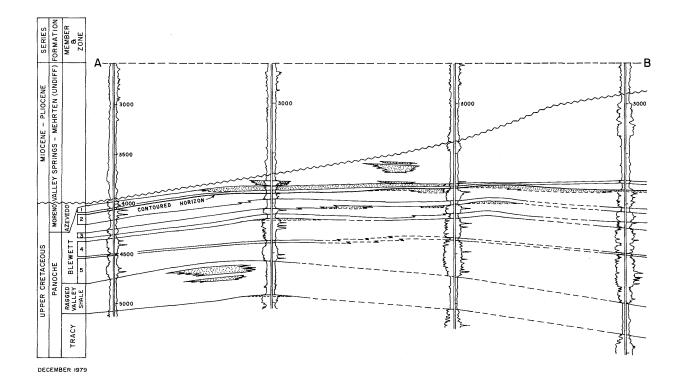
## **VAN SICKLE ISLAND GAS FIELD**

## DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron USA Inc. "Feykert" 1	Standard Oil of Calif. "Feykert" 1	32 3N 1E	MD	11,040	Nortonville and Domengine	Starkey Late Cretaceous
Deepest well	Same as above	"	"	"	"	11	11


Deepest wen					 
			POOL DATA		 FIELD OR
ITEM	MARKLEY	NORTONVILLE a/	DOMENGINE 3/		FIELD OR AREA DATA
Discovery date	September 1973	June 1968	June 1968		
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	1,700 750 5/16		1,665 1,110 1/4		
Initial reservoir pressure (psi)Reservoir temperature (°F)Initial oil content (STB/acft.)	1,450 124	2,980 153	3,000 153		
nitial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.)	Markley Eocene 3,250	720 Nortonville Eocene 6,760	940 Domengine Eocene 6,800		
Average net thickness (ft.) Maximum productive area (acres)	45	10	150		350
		RE	SERVOIR ROCK PROPE	RTIES	
Porosity (%)	20-25*** 40-45*** 55-60***	15 45 55	18 40 60		
Sgi (%) Permeability to air (md)	55-60***	33	00		
		RE	SERVOIR FLUID PROPE	RTIES	
Oil: Oil gravity (°API)					
Gas: Specific gravify (air = 1.0) Heating value (Btu/cu. ft.)	.602 1,030	.602 1,032	.602 1,030		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)			10,272		
		EN	IANCED RECOVERY PRO	OJECTS	
Enhanced recovery projects Date startedDate discontinued	.				
Peak oil production (bbl) Year					
Peak gas production, net (Mcf) Year					1,731,445 1972

Base of fresh water (ft.): Above 250


Remarks: Commercial gas deliveries began in April 1964. Cumulative condensate production through 1979 was 22,830 barrels.

<u>a</u>/ Commingled Nortonville and Domengine production.

## VERNALIS GAS FIELD



CONTOURS ON TOP OF BLEWETT 2 SAND



**VERNALIS GAS FIELD** 

# COUNTY: SAN JOAQUIN and STANISLAUS

## **DISCOVERY WELL AND DEEPEST WELL**

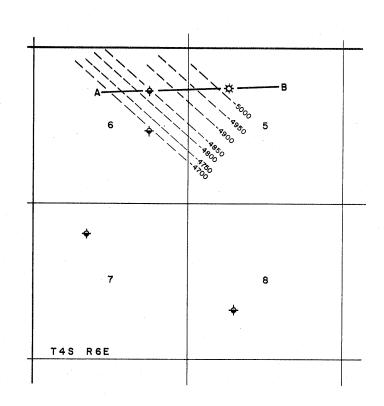
	Present operator and well designation	Original operator and well designation	Sec.	T. &	ĸR.	в.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron USA, Inc. "Blewett Comm." 1	Standard Oil Co. of Calif. "Blewett Comm."	14	3S	6E	MD	3,872	Blewett	
Deepest well	W. E. Strangman "Navarra" 1	Inter-American Resources Dev. Co. "Navarra" 1	29	3S	6E	MD	11,602		F-zone Late Cretaceous

#### **POOL DATA**

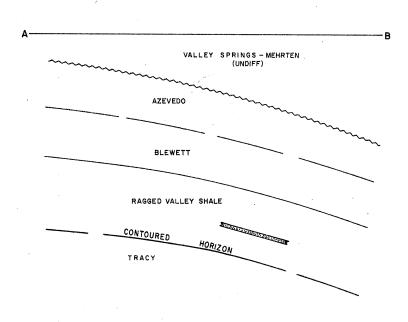
Discovery date				·			
A   200   798/370 B/   9,700   1,110   0,5,500   908   1,440/1,020 B/   1,140   1,000   908   1,440/1,020 B/   1,140   1,000   908   1,440/1,020 B/   1,140   1,000   908   1,440/1,020 B/   1,140   1,000   908   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/   1,440/1,020 B/	ITEM	BANTA .	AZEVEDO	BLEWETT		TRACY	FIELD OR AREA DATA
A   0.00   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/Asy)   Cast (Mot/	Discovery date	September 1959	January 1959	January 1941	May 1960	July 1959	,
1,425   1,680   1,765   1,105   1,22   1,30   1,25   1,50   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,20   1,2	Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	850	1,440/1,020 a/	1,140	1,000	950	
Initial age content (MSCF-Ac-fL)   Formation   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System   Strong System	pressure (psi) Reservoir temperature (°F)		1,680 118				
Promotive (%)	Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive	Valley SprsMehrten Miocene-Pliocene 3,000	Moreno Late Cretaceous 3,600	Panoche Late Cretaceous 3,800	Panoche Late Cretaceous 4,650	Panoche Late Cretaceous 4,925	
Promotity (%)	area (acres)						4,030
Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Soli			RE	SERVOIR ROCK PROPERT	ries	T	<del></del>
Swi (%)		1	25-28	27-30	25*	25-28	
Oil: Oil gravity ('API) Sulfur content (% by wt.)	Swi (%)	30*		55-60			
Oil gravity ("API)			RE	SERVOIR FLUID PROPERT	TIES		
Specific gravity (air = 1.0)	Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Bubble point press. (psia)						
Salinity, NaCI (ppm)	Specific gravity (air = 1.0)						
Enhanced recovery projects Date started	Salinity, NaCl (ppm) T.D.S. (ppm)		500-3,400	500-3,400	500-3,400	500-3,400	
Enhanced recovery projects  Date started  Date discontinued  Peak oil production (bbl)	<b>KW</b> (511117, 117, 117, 111, 111, 111, 111, 11		<u> </u>	ANCED RECOVERY PRO	IECTS		<u> </u>
Peak oil production (bbl)	Date started						
Peak oil production (bbl)							
Peak oil production (bbl)							
Peak oil production (bbl)			,				
Peak oil production (bbl)							
8,273,021   Peak gas production, net (Mcf)   Year	YearPeak gas production, net (Mcf)						

Base of fresh water (ft.): 800-1,050

#### Remarks:


 $\underline{a}/$  Former Blewett zone well, recompleted in January 1979 as a dual producer from two intervals in the Azevedo.

Selected References: Hill, F. L., 1962, Vernalis Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 2.


# SOUTHWEST VERNALIS GAS FIELD

(Abandoned)

SERIES	FORMATION	MEMBER AND ZONE		TYPICAL ELECTRIC LOG
MIOCENE - PLIOCENE	VALLEY SPRINGS - MEHRTEN (UNDIFF)		Me Market Mark Mark Make Mark Mark Mark Mark Mark Mark Mark Mark	1 MM 1 M 2500
	MORENO	AZEVEDO	\ \ \	4000
ETACEOUS		BLEWETT	June promoter market market	
UPPER CRETACEOUS	PANOCHE	RAGGED VALLEY SHALE GAS SAND	- 3	5000
DECEM		TRACY	John Mary Land	



CONTOURS ON TOP OF TRACY



DECEMBER 1979

COUNTY: SAN JOAQUIN

# VERNALIS, SOUTHWEST, GAS FIELD (ABD)

# DISCOVERY WELL AND DEEPEST WELL

		Present operator and well designation	Original operator and well designation	Sec.		- 1	В.&М.	(seet)	Pool (zone)	Strata & age at total depth
١	Discovery well	Porter Sesnon, et al "Sesnon - Vernalis"	Same as present	5	48	6E	MD	5,450	Ragged Valley	
	Deepest well	Occidental Petroleum Cor. "Raspo" l	Same as present	6	48	6E	MD	6,628		lower Tracy sand Late Cretaceous

			POOL DATA			5151 D. O.D.				
ITEM	RAGGED VALLEY					FIELD OR AREA DATA				
Discovery date	August 1959 530 340									
Bean size (in.)	1/4 2,090 126 760									
Formation	Panoche Late Cretaceous 4,560 4				·					
		RE	SERVOIR ROCK PROPERT	TIES						
Porosity (%)	25* 50* 50*			·						
	RESERVOIR FLUID PROPERTIES									
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press, (psia) Viscosity (cp) @ *F										
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.616 ^{††} 870									
Water: Salinity, NaCl (ppm)										
		ENI	IANCED RECOVERY PRO	JECTS T		Т				
Enhanced recovery projects Date started Date discontinued			·							
		,								
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	11,283 1960									

Base of fresh water (ft.): 2,600

Remarks: Commercial gas deliveries began in April 1960. The field was abandoned in March 1961. Only one well was completed and cumulative gas production was 12,063 Mcf.

# VERONA GAS FIELD

S		
SERIES	FORMATION	TYPICAL ELECTRIC LOG
MIOCENE TO HOLOCENE	UNDIFF NONMARINE STRATA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	T	2000
OLIGOCENE - MIOCENE	MARKLEY CANYON FILL	2500
~~		3000
EOUS	STARKEY	
UPPER CRETACEOUS	WINTERS	3500
	SACRAMENTO SHALE	Mark
	KIONE	4000

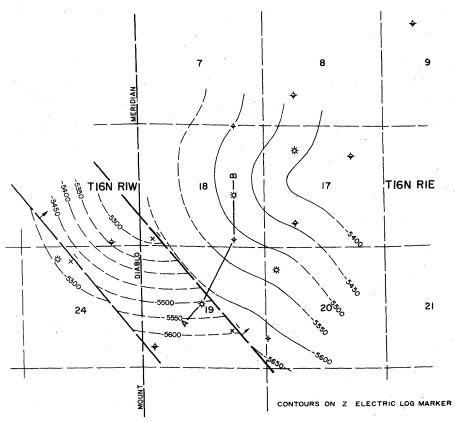
DECEMBER 1980

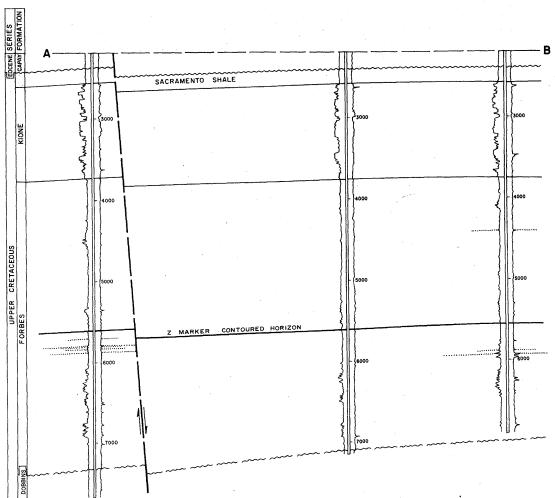
SUBSURFACE DATA NOT AVAILABLE

**VERONA GAS FIELD** 

COUNTY: SUTTER

## DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Davis Oil Co. "Nicholas" 1	Same as present	14 11N 3E	MD	4,088	Markley Canyon fill	Kione Late Cretaceous
Deepest well	Same as above	п	. 11		11	11	11


	POOL DATA										
ITEM	MARKLEY CANYON FILL					FIELD OR AREA DATA					
Discovery date	June 1979  1,185 480 5/16 792 93 210-310 Markley Canyon fill Oligocene-Miocene 1,840 15 40										
		RE	SERVOIR ROCK PROPERT	TES							
Porosity (%)	15-22† 40* 60*	·									
	RESERVOIR FLUID PROPERTIES										
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F											
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.654 771			٠.							
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	1										
		ENF	IANCED RECOVERY PROJ	JECTS		1					
Enhanced recovery projects Date started Date discontinued	.] ' 1										
						·					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year											

Base of fresh water (ft.): 800

Remarks: Commercial gas deliveries have not yet begun.

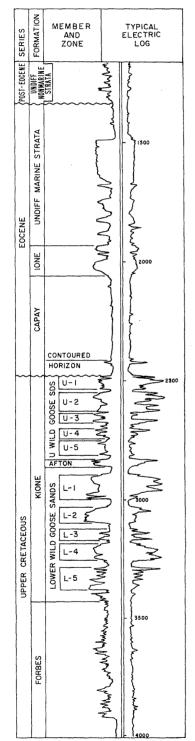
# WEST BUTTE GAS FIELD

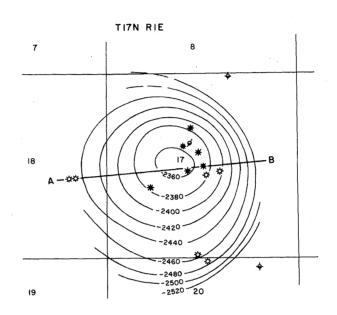




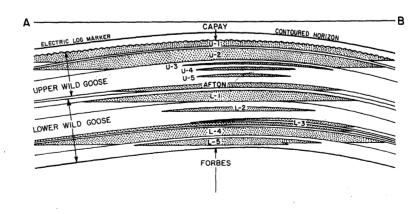
**WEST BUTTE GAS FIELD** COUNTY: SUTTER

# **DISCOVERY WELL AND DEEPEST WELL**


		Present operator and well designation	Original operator and well designation	Sec. T. &	k R.	в.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
i	Discovery well	Occidental Pet. Corp."Standard-Browning"	Occidental Pet. Corp. "Standard" 1	19 16N	1E	MD	7,664	unnamed sand stringers	
	•	Occidental Pet. Corp. "Standard-Browning" 2	Same as present	20 16N	1E	MD	8,097	ouring or o	G-zone Late Cretaceous


			POOL DATA			
ITEM	UNNAMED SAND STRINGERS					FIELD OR AREA DATA
Discovery date	April 1961					
nitial production rates Oil (bbl/day)						
Gas (Mcf/day)	2,271					
Flow pressure (psi)	1,275 15/64					
Bean size (in.)njtial reservoir						
pressure (psi)	1,920-4,380 115-132					
eservoir temperature (°F) nitial oil content (STB/acft.)						
itial gas content (MSCF/acft.).	1,100-1,900					
ormation	Forbes Late Cretaceous					
eologic ageverage depth (ft.)	4,260-6,500					
verage net thickness (ft.)	8-50				•	
laximum productive	960					
area (acres)	300					
		RE	SERVOIR ROCK PROPERT	TES		
orosity (%)	18-25***					
oi (%)	40-50***					
wi (%)gj (%)	50-60***					
ermeability to air (md)						
,		RF	I Servoir fluid propert	I		
Dil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ "F						
ias: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.572 975-1,005					
Vater: Salinity, NaCl (ppm) T.D.S. (ppm)						
		ENI	HANCED RECOVERY PRO	JECTS		<b>-</b>
Enhanced recovery projects Date started Date discontinued		,				
Donk all annahustina (ELI)						
Peak oil production (bbl) Year			1			
Peak gas production, net (Mcf)	351,120			1	1	1
Year	1963					

Base of fresh water (ft.): 2,200


Remarks: Commercial gas deliveries began in August 1962. The field was abandoned in May 1970. Five wells were completed and cumulative gas production was 659,960 Mcf. The field was reactivated July 1981.

Selected References: Hluza, A. G., 1962, West Butte Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 2.





CONTOURS ON ELECTRIC LOG MARKER IN CAPAY



DECEMBER 1979

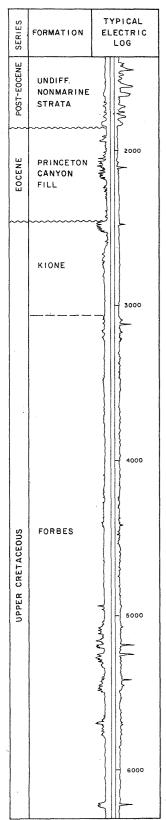
**WILD GOOSE GAS FIELD** 

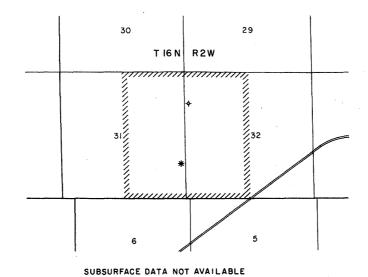
#### COUNTY: BUTTE and COLUSA

#### **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Ongman operator and transfer	Sec. T. & R.		(leet)	Pool (zone)	Strata & age at total depth
Discovery well	Exxon Corp. "Wild Goose Unit 1" 1	Honolulu Oil Corp. "Honolulu-Humble Wild Goose" 1	17 17N 1E	MD	4,000	Lower Wild Goose	
Deepest well	Exxon Corp. "Howard F. Brady" 1	Humble Oil & Rfg. Co. "Howard F. Brady" 1	20 17N 1E	MD	7,890		Forbes Late Cretaceous

, 		i	POOL DATA			rici D OP
ITEM	HANGTOWN	UPPER WILD GOOSE	AFTON	LOWER WILD GOOSE		FIELD OR AREA DATA
iscovery date nitial production rates Oil (bbl/day)	September 1963	July 1953	September 1963	August 1951		
Flow pressure (psi) Bean size (in.)	4,000 940 24/64	7,340 880 36/64	4,840 <u>a/</u> 1,040 24/64	4,020 1,370 24/64		
nitial reservoir pressure (psi)eservoir eservoir temperature (°F)es	1,105 82	1,200-1,310 98	1,335 87	1,345-1,500 105		
nitial oil content (STB/acft.)itial gas content (MSCF/acft.). ormation	770 Kione Late Cretaceous 2,400 10	810-888 Kione Late Cretaceous 2,500 200	930 Kione Late Cretaceous 2,850 30	900-1,000 Kione Late Cretaceous 2,900 250		
Aaximum productive area (acres)					, i	360
		R	ESERVOIR ROCK PROPE	RTIES		
orosity (%)	30*	30*	30*	30*		
oj (%)	25* 75*	25* 75*	25* 75*	25* 75*		
		R	ESERVOIR FLUID PROPE	RTIES		
Dil: Oil gravity (°API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	. 640 800	.640 800	-	.640 805		
Vater: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)		30,473-55,640	-	30,473-45,368		
		EN	HANCED RECOVERY PR	OJECTS		L
Enhanced recovery projects Date started Date discontinued	,					
Peak oil production (bbl) YearPeak gas production, net (Mcf)						8,248,811


Base of fresh water (ft.): 1,050


Remarks: Commercial gas deliveries began in November 1951.

a/ Commingled production from Afton and Upper Wild Goose. Honolulu Oil Corp. tested this zone in open hole at a maximum rate of 2,980 Mcf per day in well "Honolulu-Humble Tule Goose" 1 (now Exxon Corp. "Wild Goose Gas Unit 1" 7) in July 1952.

Selected References: Hunter, G. W., 1955, Wild Goose Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 41, No. 1.

# WILLIAMS GAS FIELD

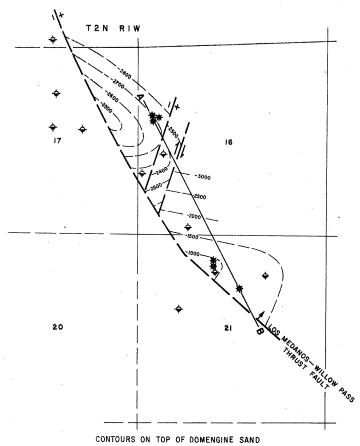


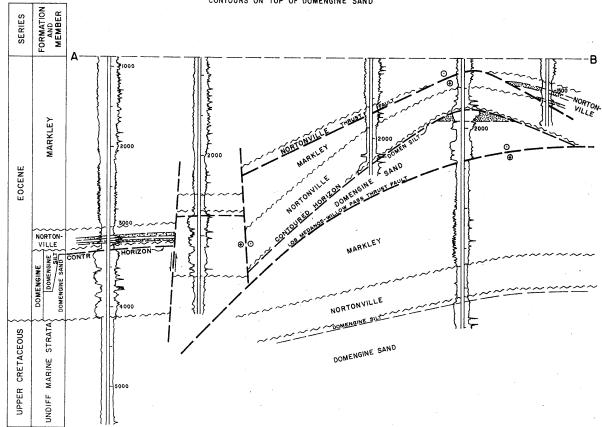


DECEMBER 1980

WILLIAMS GAS FIELD COUNTY: COLUSA

# DISCOVERY WELL AND DEEPEST WELL


		Present operator and well designation	Original operator and well designation	Sec. T. &	k R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
ľ	Discovery well	Davis Oil Co. "Zumwalt" l	Same as present	31 16N	2W	MD	6,275	Forbes	Forbes Late Cretaceous
	Deepest well	Same as above	"	"		"	"	11	"


			POOL DATA	· ·		FIELD OR				
ITEM	FORBES					AREA DATA				
Discovery date	September 1978 710 470									
Bean size (in.)	1/4 2,760 118 530-750									
Formation	Forbes Late Cretaceous 5,300 10-20 40									
		RE	SERVOIR ROCK PROPERT	TIES						
Porosity (%)	15-19*** 55-60*** 40-45***		·		·					
	RESERVOIR FLUID PROPERTIES									
Oil: Oil gravity (*API)										
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.573†† 970									
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)				·						
		EN	HANCED RECOVERY PRO	JECTS	r	Γ				
Enhanced recovery projects Date started Date discontinued				,						
		,								
Peak oil production (bbl) Year Peak gas production, net (Mcf)										

Base of fresh water (ft.): 1,800

Remarks: Commercial gas deliveries have not yet begun.

# WILLOW PASS GAS FIELD

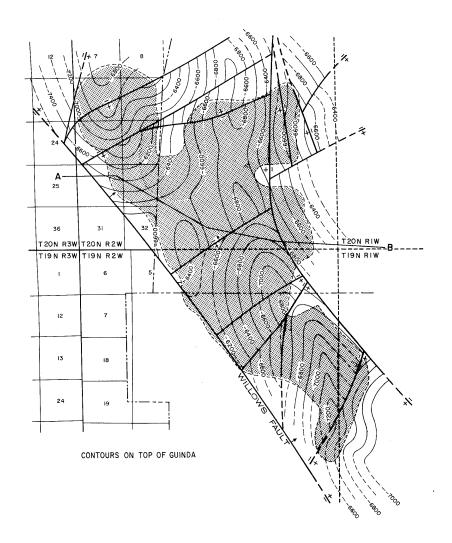


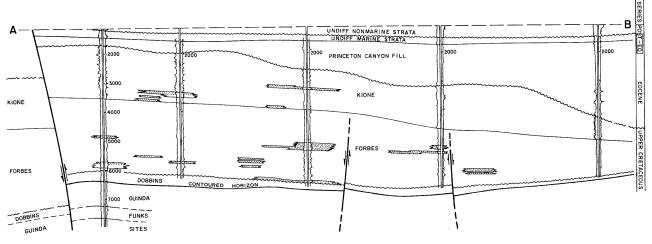


APRIL 1980

## **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation		Sec. T. & F		Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	The Termo Co, "Faria Unit" 1	Trico Oil and Gas Co. "Faria Unit"1	21 2N 1	W MD	4,518	Domengine	
Deepest well	The Termo Co. "Neustaedter" 1	Trico Oil and Gas Co. "Neustaedter" 1	16 2N 1	W MD	5,483		undiff. Cret. Late Cretaceous


Deepest well			·			Late Cretaceous					
			POOL DATA								
ITEM	NORTONVILLE	DOMENGINE				FIELD OR AREA DATA					
Discovery dateInitial production rates	July 1959	May 1959									
Oil (bbl/day)	1,500 310 3/8	4,300 290 3/4									
Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.)	530-1,335 97-106	650 98									
Initial gas content (MSCF/acft.). Formation	260-710 Nortonville Eocene 1,500-3,100	320-440 Domengine Eocene 1,800 50									
Average net thickness (ft.) Maximum productive area (acres)	33					85					
		RESERVOIR ROCK PROPERTIES									
Porosity (%) Soj (%) Swj (%)	26* 35* 65*	25-30*** 25-35*** 65-75***									
Sgi (%) Permeability to air (md)	65.	14 <u>88</u>				, , , , , , , , , , , , , , , , , , ,					
		RE	SERVOIR FLUID PROPERT	IES							
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ 'F											
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.562†† 1,000	.575†† 1,020									
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)											
		ENH	IANCED RECOVERY PROJ	ECTS							
Enhanced recovery projects Date started Date discontinued											
	,										
Peak oil production (bbl) YearPeak gas production, net (Mcf)	·					263,347 1967					
Voca			1		1	1901					


Base of fresh water (ft.): 150

Remarks: Commercial gas deliveries began in April 1960. The field was abandoned in September 1980. Six wells were completed and cumulative gas production was 2,927,805 Mcf. The field was reactivated in October 1981.

Selected References: Matthews, J. F., Jr., 1963, Willow Pass Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 49, No. 1.

# WILLOWS-BEEHIVE BEND GAS FIELD





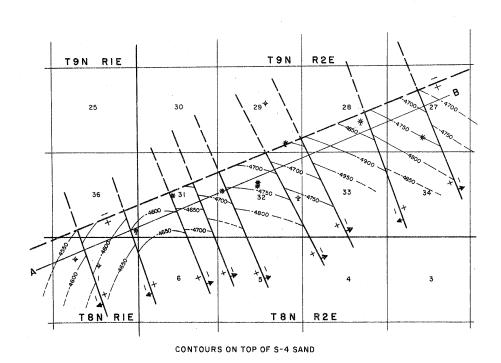
DECEMBER 1979

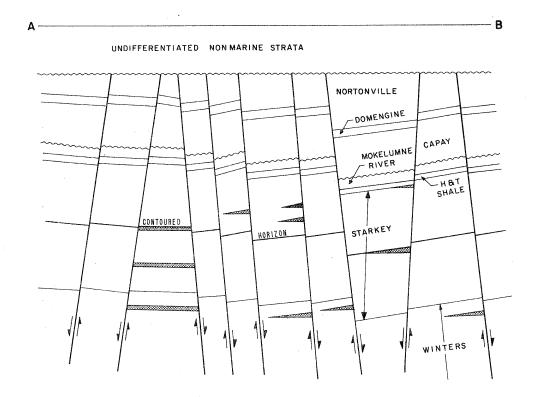
## **WILLOWS-BEEHIVE BEND GAS FIELD**

## **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Teal Petroleum Co. "Transamerica" 71-18	The Ohio Oil Co. "E. E. Willard" 1-A	18 20N 2W	MD	6,014	Kione	
Deepest well	Sun Oil Co. "Sunray-General Petroleum Whyler-Wolcott Unit" 1	Sunray Oil Corp. "Sunray- General Petroleum Whyler - Wolcott Unit" 1	11 19N 2W	MD	10,807		basement pre-Late Cret.

			POOL DATA			·
ITEM	PRINCETON CANYON FILL	KIONE	FORBES	DOBBINS	GUINDA	FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	September 1956	August 1938	September 1954	March 1958	March 1955	
Gas (Mcf/day)	3,037 857 19/64	5,355 515 21/32	5,000 2,050 5/16	1,500 740 48/64	280 1,080 -	
pressure (psi)	909 100 600	900-1,705 94-106	2,200-4,200 110-118	4,400 129	135	
Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive	Princeton Cyn. fill Eocene 2,045 55	620-1,400 Kione Late Cretaceous 1,930-3,650 10-80	1,600-2,200 Forbes Late Cretaceous 4,420-6,400 3-60	1,000 Dobbins Late Cretaceous 6,700 20	Guinda Late Cretaceous 7,350 70	13,380
area (acres)			SERVOIR ROCK PROPERTY			
			SERVOIR ROCK PROPERT	18	<u> </u>	T
Porosity (%)	30* 28* 72* -	26-32 30-35 70 400	24-30 30-35 70 300	45 55 -		
		RI	SERVOIR FLUID PROPER	ries	<u> </u>	
Oil: Oil gravity ('API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.570 990	.570 990	.570 985	.570* 985*		
Water: Salinity, NaCl (ppm)	1,710	4,960-18,400	1,200-17,100			
, , , , , , , , , , , , , , , , , , , ,		ENI	IANCED RECOVERY PRO	ECTS		L
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year		÷.				29,202,019 1959


Base of fresh water (ft.): 850-1,500


Remarks: The Ohio Oil Co. well "E. E. Willard" 1 (now operated by Transamerica Development Co.) blew out in January 1938 while operator was preparing to pull drill pipe from 4,505 feet. A large crater was formed in which the derrick and equipment were lost. The well blew gas and water for 23 days. Commercial gas deliveries began in March 1944. Many of the gas sand stringers in the Kione and Forbes formations have been given local names by operators.

Selected References: Barger, R. M., and Sullivan, J. C., 1966, Willows-Beehive Bend Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 52, No. 2, Part 2.

# WILLOW SLOUGH GAS FIELD

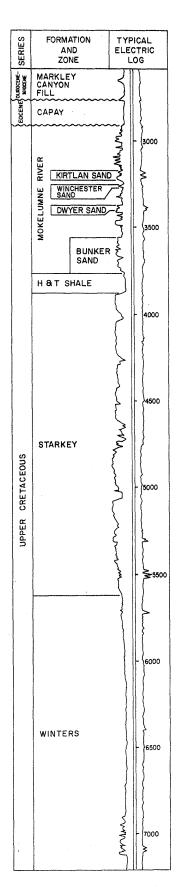
SERIES		MATION & MBER	EL	PICAL ECTRIC LOG
POST-EOCENE	NON	DIFF MARINE RATA		M. M. 25000
.NE		RTONVILLE		3500
EOCENE	CAF		~~	-) 4000
	H & T	SHALE	-{}	}
		S-1 SAND	Jan-man	}
		S-2 SAND	- Am	4500
	ΕΥ	S-3 SAND	_ _ _ _ _ _	5
SE	STARKEY	S-4 SAND	{	5000
UPPER CRETACEOUS		S-5 SAND	many which was a second	
UPPER	WII	NTERS	www.wmlw.	5500

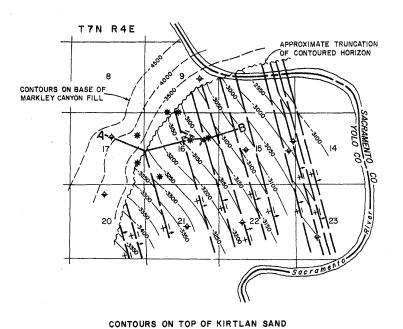


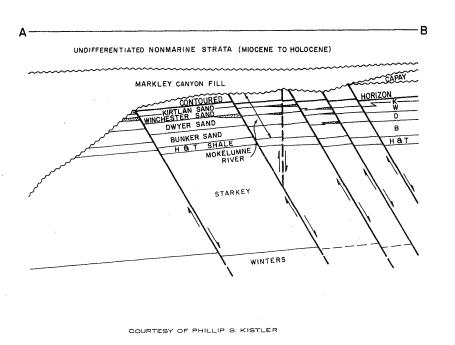


MARCH 1980

## **DISCOVERY WELL AND DEEPEST WELL**


		Present operator and well designation	Original operator and well designation	Sec.	T. & I	R.	в.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
l	Discovery well	Shell Oil Co. "Schuder" 1-32	Same as present	32	9N 2	2E	MD	6,190	Starkey	
	Deepest well	Shell Oil Co. "Stephens" 1-28	Same as present	28	9N 2	2E	MD	7,504 a	/	Winters Late Cretaceous


ITEM	STARKEY	WINTERS	·			FIELD OR AREA DATA
Discovery date	October 1974 1,020 1,750	June 1975 375 1,000				
Flow pressure (psi)  Bean size (in.)  Initial reservoir  pressure (psi)  Reservoir temperature (°F)  Initial oil content (STB/ac-ft.)	2,200 113-117 940-1,200	2,530 118		·		
Initial gas content (MSCF/acft.). Formation	Starkey Starkey Late Cretaceous 4,850 25	960-1,200 Winters Late Cretaceous 5,990 10		,		1.600
area (acres)		R	ESERVOIR ROCK PROPERT	TIES		1,600
Porosity (%)	27-31†	25-29†				
Soj (%)	43-48† 52-57†	45-50 † 50-55 †		·		
		R	ESERVOIR FLUID PROPERT	ries		
Oil: Oil gravity ('API)						
Viscosity (cp) @ °F Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.605 900	.605 900				
Water: Salinity, NaCl (ppm)	<b>-</b>	5,040				
		EN	HANCED RECOVERY PROJ	IECTS	<u></u>	r
Enhanced recovery projects Date started Date discontinued						
		·				·
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	, -					1,799,148 1979


Base of fresh water (ft.): 2,800

Remarks: Commercial gas deliveries began in February 1977.  $\underline{a}/$  Directional well, true vertical depth is 7,138 feet.

## WINCHESTER LAKE GAS FIELD



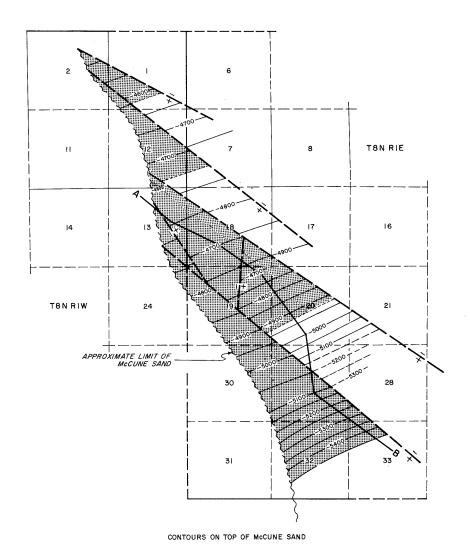


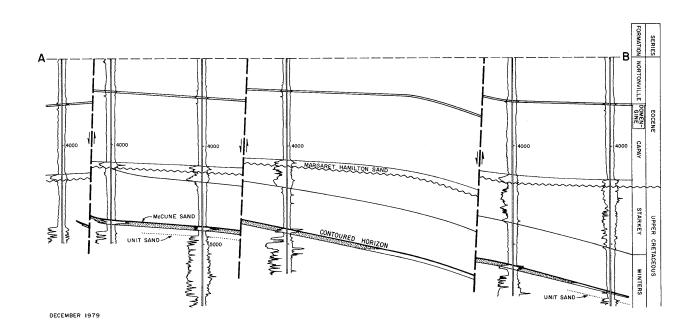


COUNTY: YOLO

## **WINCHESTER LAKE GAS FIELD**

## **DISCOVERY WELL AND DEEPEST WELL**


	Present operator and well designation	Original operator and well designation	Sec	. т. ғ	k R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Atlantic Oil Co. "Winchester Lake" 2	Same as present	9	7N	4E	MD	5,599	Winchester	
Deepest well	Atlantic Oil Co. "Dwyer" 1	Same as present	9	7N	4E	MD	7,200	Dwyer	Winters Late Cretaceous


ru	и н.	DA	IA

			, TOOL BATTA	ririn on	
ITEM	KIRTLAN	WINCHESTER	DWYER	BUNKER	FIELD OR AREA DATA
Discovery date	August 1975	August 1973	December 1974	February 1976	
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	3,670 1,110 3/8	1,070 1,250 3/16	3,682 1,115 3/8	1,108 1,292 3/16	
Initial reservoir pressure (psi)	1,380 118	1,460 120	1,430 121	1,500 125	
Initial gas content (MSCF/acft.). Formation Ceologic age Average depth (ft.) Average net thickness (ft.) Maximum productive	Mokelumne River Late Cretaceous 3,150	530-860 Mokelumne River Late Cretaceous 3,320 15	520-840 Mokelumne River Late Cretaceous 3,380	540-870 Mokelumne River Late Cretaceous 3,680 10	(00
area (acres)					480
		Ri	ESERVOIR ROCK PROPER	TIES	
Porosity (%)	22-30***	22-30***	22-30***	22-30***	
Soj (%)	35-45*** 55-65***	35-45 *** 55-65 ***	35-45*** 55-65***	35-45*** 55-65***	
		Ri	ESERVOIR FLUID PROPER	TIES	
Oil: Oil gravity (*API)					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.607†† 886	.630†† 873	.630†† 873	.600†† 920	
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)					
		ENI	HANCED RECOVERY PRO	ECTS	_
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					416,227 1979

Base of fresh water (ft.): 1,800

Remarks: Commercial gas deliveries commenced May 1978.





**WINTERS GAS FIELD** 

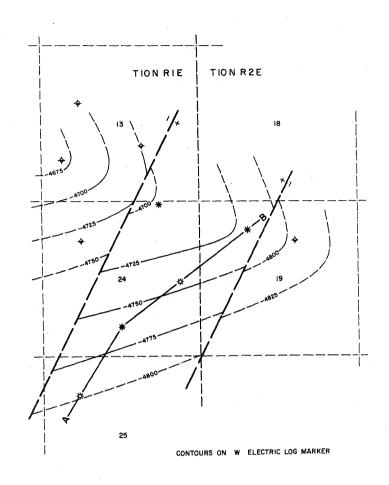
COUNTY: SOLANO and YOLO

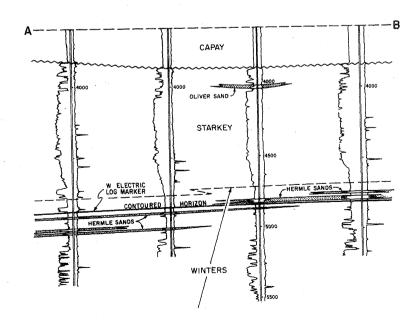
## **DISCOVERY WELL AND DEEPEST WELL**

	Present operator and well designation	Original operator and well designation	Sec.	r. & R.	B,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "McCune" 1	Same as present	29 8	3N 1E	MD	5,528	McCune	
Deepest well	Albert A. Rembold "Winters Unit 2" 1	Shell Oil Co. "Winters Unit 2" 1	18 8	3N 1E	MD	8,493		Forbes Late Cretaceous

		***************************************	POOL DATA		
ITEM	CAPAY (HOOPER)	McCUNE	UNIT	UNIT OIL ZONE	FIELD OR AREA DATA
Discovery date	September 1975	February 1946	September 1946	September 1959	
Oil (bbl/day)	1,339 1,720 3/16	12,500 1,626 1/2	3,060 <u>a/</u> 1,953 1/4	8,321 <u>b</u> / 1,513 1/2	
Initial reservoir pressure (psi)	1,920 112	2,107 116	2,489 116	2,489 125	
Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.)	1,300 Capay Eocene 4,615 3	1,100-1,300 Winters Late Cretaceous 4,850 20	1,400-1,700 Winters Late Cretaceous 4,920 5	Winters Late Cretaceous 5,585 5	
Maximum productive area (acres)					1,000
		R	ESERVOIR ROCK PROPER	TIES	
Porosity (%)	30**	28-32	30-34		
Soj (%)	30** 70** -	35-40 60-65 340-650	28-33 67-72 -	- - - -	
		R	ESERVOIR FLUID PROPER	TIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Bubble point press. (psia) Viscosity (cp) @ *F  Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.579 985	.616 850	- 865		
Water: Salinity, NaCl (ppm) T.D.S. (ppm)					
		EN	HANCED RECOVERY PRO	DIECTS	 
Enhanced recovery projects Date started Date discontinued				•	10
		,			
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					2,235,158 1963

Base of fresh water (ft.): 2,400


Remarks: Commercial gas deliveries began in January 1949. Texaco Inc. "McCune" 1 was the first commercial oil well in the Sacramento Valley and was the only oil well in the field; it was abandoned in March 1966. Cumulative oil production was 18,560 barrels with a peak production of 9,865 barrels in 1960.


a/ Commingled production from McCune and Unit zones.

Texaco Inc. "McCune" 1 was completed as a gas well but began flowing 29° API gravity oil when connected to salesline. Average daily production during May 1960 was 79 bbl oil and 512 Mcf gas.

Selected References: Hunter, G. W., 1956, Winters Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 42, No. 2.

SERIES	FORMATION	TYPICAL ELECTRIC LOG
EOCENE	CAPAY	
	STARKEY	4000
	WINTERS	2000
	SACRAMENTO SHALE KIONE	귀
LIPPER CRETACEOUS	FORBES	9000
And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t		W - 10000





DECEMBER 1979

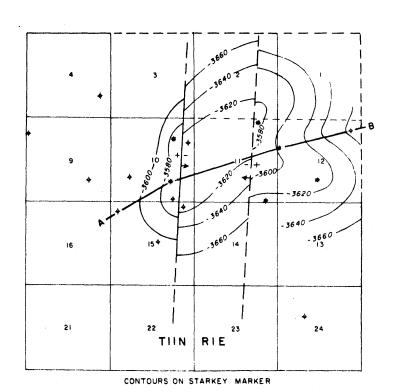
COUNTY: YOLO

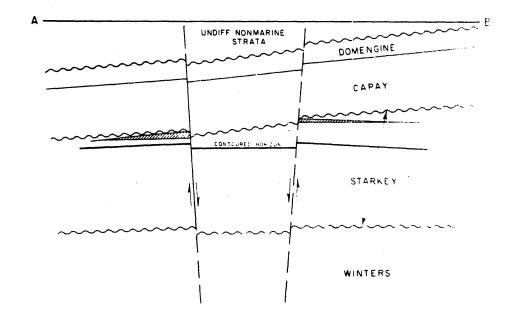
# **WOODLAND GAS FIELD**

## **DISCOVERY WELL AND DEEPEST WELL**

		Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
ı	Discovery well	Atlantic Oil Co. "Shell-Oliver" 1	Same as present	24 10N 1E	MD	11,007	Oliver	Forbes Late Cretaceous
	Deepest well	Same as above	n .	"	"	. "	11	"

Deepest well	Same as abou	ve	"								
				POOL DATA							
ITEM		OLIVER	HERMLE						FIELD OR AREA DATA		
Discovery date Initial production rate Oil (bbl/day) Gas (Mcf/day)	<u></u>	September 1962 2,296 1,279	October 1962 8,639 1,816								
Flow pressure (psi)		18/64 <u>a</u> / 1,765 88	2,100 98-113	•							
nitial oil content (STI nitial gas content (M: formation	SCF/acft.).	840-1,100 Starkey Late Cretaceous 3,988 32	930-1,200 Winters Late Cretaceous 4,430-5,130 15						700		
		RESERVOIR ROCK PROPERTIES									
Porosity (%)		25-29 37-42 58-63	25-29 37-42 58-63								
			RES	ERVOIR FLUID PROPERT	TES						
Oil: Oil gravity (*API) Sulfur content (% Initial solution GOR (SCF/STB, Initial oil FVF (RB, Bubble point press Viscosity (cp) @ *I	by wt.) )/STB)										
Gas: Specific gravity (ai Heating value (Btu	ir = 1.0) ı/cu. ft.)	. \$94 923	. 594 923								
Water: Salinity, NaCl (pp T.D.S. (ppm) R _w (ohm/m) (77°			20,544			•		·	1		
		ENHANCED RECOVERY PROJECTS									
Enhanced recovery p Date started Date discontinued		·									
Peak oil production YearPeak gas production,									461,757		
Year									1966		


Base of fresh water (ft.): 3,100


a/ Bean sizes were estimated. Wells tested through orifice meters.

Selected References: Buccroft, G. W., 1966, Woodland Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 52, No. 1.

# ZAMORA GAS FIELD

SERIES	FORMATION AND ZONE	TYPICAL ELECTRIC LOG
POST-EOCENE	UNDIFF NONMARINE STRATA	The perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the perfect of the pe
~	DOMENGINE	~{  5
EOCENE	CAPAY	h 3500
~	GAS SAND	<u></u>
	STARKEY	14000
UPPER CRETACEOUS	WINTERS	W. W. M. M. M. M. M. M. M. M. M. M. M. M. M.
Ī	SACRAMENTO SHALE	5500





DECEMBER 1980

#### **DISCOVERY WELL AND DEEPEST WELL**

		Present operator and well designation	Original operator and well designation	Sec. T. &	R.	В,&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
l	Discovery well	ARCO Oil and Gas Co. "AROW-Knaggs" 1	Westates Petroleum Co. "AROW-Knaggs" 1	10 11N	1E	MD	3,805 a	Starkey	Guinda
	Deepest well	Pexco, Inc. "Knaggs-Wallace" 1	Same as present	12 11N	1E	MD	11,005		Late Cretaceous

# **POOL DATA** FIELD OR AREA DATA STARKEY ITEM April 1977 1,353 24/64 1,474 100 740-920 Starkey Average net thickness (ft.) ... Maximum productive Late Cretaceous 3,580 30 350 area (acres) ..... RESERVOIR ROCK PROPERTIES 28-32 † Porosity (%) .. 40-45 † 55-60 † RESERVOIR FLUID PROPERTIES Oil gravity (°API) ...... Sulfur content (% by wt.).... Initial solution GOR (SCF/STB) ...... Initial oil FVF (RB/STB)..... Bubble point press. (psia)... Viscosity (cp) @ *F...... .578 Specific gravity (air = 1.0)...... Heating value (Btu/cu. ft.)...... 955 Water: Salinity, NaCl (ppm) ... T.D.S. (ppm) ..... R_W (ohm/m) (77°F) ..... ENHANCED RECOVERY PROJECTS Enhanced recovery projects.. Date started ..... Date discontinued Peak oil production (bbl) Year 499,145 Peak gas production, net (Mcf) Year 1979

Base of fresh water (ft.): 1,900

Remarks: Commercial gas deliveries began in September 1978.

a/ Directional well; true vertical depth is 3,770 feet.